Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems

We propose a new method to obtain the global optimum of MINLP problems containing bilinearities. Our special method that contracts the bounds of one variable at a time allows reducing the gap between a linear lower bound and an upper bound obtained solving the original problem. Unlike some methods based on variable partitioning, our bound contraction procedure does not introduce new integers or intervals. We illustrate the method by applying it to water management problems.

[1]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[2]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[3]  E. Hansen Global optimization using interval analysis: The one-dimensional case , 1979 .

[4]  Ignacio E. Grossmann,et al.  Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty , 2006, Comput. Chem. Eng..

[5]  Ignacio E. Grossmann,et al.  Strengthening of lower bounds in the global optimization of Bilinear and Concave Generalized Disjunctive Programs , 2010, Comput. Chem. Eng..

[6]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[7]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[8]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[9]  Miguel J. Bagajewicz,et al.  On the Degeneracy of the Water/Wastewater Allocation Problem in Process Plants , 2010 .

[10]  Miguel J. Bagajewicz,et al.  A new approach for the design of multicomponent water/wastewater networks , 2008 .

[11]  Ignacio E. Grossmann,et al.  A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms , 1999, J. Glob. Optim..

[12]  M. Bagajewicz,et al.  A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems , 2012 .

[13]  P. Pardalos,et al.  Recent developments and trends in global optimization , 2000 .

[14]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[15]  N. Sahinidis,et al.  A Lagrangian Approach to the Pooling Problem , 1999 .

[16]  Miguel J. Bagajewicz,et al.  On the appropriate modeling of process plant water systems , 2009 .

[17]  M. Bagajewicz,et al.  RETROFIT OF WATER NETWORKS IN PROCESS PLANTS , 2006 .

[18]  Christodoulos A. Floudas,et al.  Global optimization of a combinatorially complex generalized pooling problem , 2006 .

[19]  Ignacio E. Grossmann,et al.  Logic Based Outer Approximation for Global Optimization of Synthesis of Process Networks , 2004 .

[20]  Aharon Ben-Tal,et al.  Global minimization by reducing the duality gap , 1994, Math. Program..

[21]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[22]  Miguel J. Bagajewicz,et al.  A review of recent design procedures for water networks in refineries and process plants , 2000 .

[23]  C. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Computers and Chemical Engineering.

[24]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[25]  Takahito Kuno,et al.  A Lagrangian Based Branch-and-Bound Algorithm for Production-transportation Problems , 2000, J. Glob. Optim..

[26]  Ronald R. Willis,et al.  New Computer Methods for Global Optimization , 1990 .

[27]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[28]  Mariano J. Savelski,et al.  On zero water discharge solutions in the process industry , 2004 .

[29]  Ignacio E. Grossmann,et al.  A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures , 2008, J. Glob. Optim..

[30]  Miguel J. Bagajewicz,et al.  Profit-based grassroots design and retrofit of water networks in process plants , 2009, Comput. Chem. Eng..

[31]  Mariano J. Savelski,et al.  On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Sin , 2001 .

[32]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[33]  C. Floudas Global optimization in design and control of chemical process systems , 1998 .

[34]  Mahmoud M. El-Halwagi,et al.  Global optimization of nonconvex nonlinear programs via interval analysis , 1994 .

[35]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[36]  Ignacio E. Grossmann,et al.  Logic-based outer approximation for globally optimal synthesis of process networks , 2005, Comput. Chem. Eng..

[37]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[38]  Ramon E. Moore,et al.  Rigorous methods for global optimization , 1992 .