Powell-Sabin splines with boundary conditions for polygonal and non-polygonal domains

Powell-Sabin splines are piecewise quadratic polynomials with a global C^1-continuity, defined on conforming triangulations. Imposing boundary conditions on such a spline leads to a set of constraints on the spline coefficients. First, we discuss boundary conditions defined on a polygonal domain, before we treat boundary conditions on a general curved domain boundary. We consider Dirichlet and Neumann conditions, and we show that a particular choice of the PS-triangles at the boundary can greatly simplify the corresponding constraints. Finally, we consider an application where the techniques developed in this paper are used: the numerical solution of a partial differential equation by the Galerkin and collocation method.

[1]  Kuo-Hsiung Wang,et al.  (Journal of Computational and Applied Mathematics,233(2):449-458)Optimal Management of the Machine Repair Problem with Working Vacation:Newton's Method , 2009 .

[2]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[3]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[4]  James H. Bramble,et al.  A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries , 1994 .

[5]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[6]  Adhemar Bultheel,et al.  Powell-Sabin spline Wavelets , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[7]  W. Schempp,et al.  Multivariate Approximation Theory IV , 1989 .

[8]  Z. Ditzian Second Edmonton Conference on Approximation Theory , 1983 .

[9]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[10]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[11]  Igor G. Tsukanov,et al.  Meshfree simulation of deforming domains , 1999, Comput. Aided Des..

[12]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[13]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[14]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[15]  C. Christara Quadratic spline collocation methods for elliptic partial differential equations , 1994 .

[16]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[17]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[18]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[19]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[20]  Hendrik Speleers,et al.  Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..

[21]  P. Dierckx,et al.  Constrained surface fitting using Powell-Sabin splines , 1994 .

[22]  Larry L. Schumaker,et al.  ON SPACES OF PIECEWISE POLYNOMIALS WITH BOUNDARY CONDITIONS. I. RECTANGLES , 1982 .