Monte Carlo methods for Bayesian analysis of constrained parameter problems

SUMMARY Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[5]  J. Geweke,et al.  BAYESIAN INFERENCE IN ECONOMETRIC MODELS USING , 1989 .

[6]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[7]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[8]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[9]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[10]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[11]  Ming-Hui Chen Importance-Weighted Marginal Bayesian Posterior Density Estimation , 1994 .

[12]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[13]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[14]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[15]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[16]  Ming-Hui Chen,et al.  Bayesian Analysis for a Constrained Linear Multiple Regression Problem for Predicting the New Crop of Apples , 1996 .

[17]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[18]  Weighted distributions viewed in the context of model selection: A Bayesian perspective , 1996 .

[19]  Charles J. Geyer,et al.  Estimation and Optimization of Functions , 1996 .

[20]  Bayesian Prediction of the Shelf Life of a Military Ration with Sensory Data , 1996 .

[21]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[22]  Ming-Hui Chen,et al.  ESTIMATING RATIOS OF NORMALIZING CONSTANTS FOR DENSITIES WITH DIFFERENT DIMENSIONS , 1997 .

[23]  Ming-Hui Chen,et al.  On Monte Carlo methods for estimating ratios of normalizing constants , 1997 .

[24]  V. Johnson A Coupling-Regeneration Scheme for Diagnosing Convergence in Markov Chain Monte Carlo Algorithms , 1998 .

[25]  Joseph G. Ibrahim,et al.  Markov Chain Monte Carlo Sampling , 2000 .