Hi-C sequencing unravels dynamic three-dimensional chromatin interactions in muntjac lineage: insights from chromosome fusions in Fea’s muntjac genome

[1]  D. Conrad,et al.  TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function , 2023, Nature communications.

[2]  H. A. Lawson,et al.  Transposable elements in mammalian chromatin organization , 2023, Nature Reviews Genetics.

[3]  Heather K. Schmidt,et al.  Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes , 2023, Nature Communications.

[4]  D. G. Lupiáñez,et al.  Evolution of 3D chromatin organization at different scales. , 2023, Current opinion in genetics & development.

[5]  D. Cooper,et al.  Large-Scale Chromosomal Changes Lead to Genome-Level Expression Alterations, Environmental Adaptation, and Speciation in the Gayal (Bos frontalis) , 2023, Molecular biology and evolution.

[6]  T. J. Robinson,et al.  Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. , 2022, Cell reports.

[7]  Yuan Wang,et al.  Morphological, Phaneroptic, Habitat and Population Description of Three Muntjac Species in a Tibetan Nature Reserve , 2022, Animals : an open access journal from MDPI.

[8]  S. Schaeffer,et al.  The relevance of chromatin architecture to genome rearrangements in Drosophila , 2022, Philosophical Transactions of the Royal Society B.

[9]  Zhihua Zhang,et al.  Comparative 3D genome architecture in vertebrates , 2022, BMC biology.

[10]  M. Bush,et al.  Early to mid-Holocene human activity exerted gradual influences on Amazonian forest vegetation , 2022, Philosophical Transactions of the Royal Society B.

[11]  H. Lewin,et al.  Conservation of chromatin conformation in carnivores , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Wen Wang,et al.  Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer , 2021, Nature Communications.

[13]  D. Griffin,et al.  Remnant of Unrelated Amniote Sex Chromosomal Linkage Sharing on the Same Chromosome in House Gecko Lizards, Providing a Better Understanding of the Ancestral Super-Sex Chromosome , 2021, Cells.

[14]  Jonas Paulsen,et al.  TAD cliques predict key features of chromatin organization , 2021, BMC Genomics.

[15]  D. Reinberg,et al.  A molecular toolkit for superorganisms. , 2021, Trends in genetics : TIG.

[16]  Yu-Hao Deng Perovskite decomposition and missing crystal planes in HRTEM , 2021, Nature.

[17]  R. Aiese Cigliano,et al.  The impact of chromosomal fusions on 3D genome folding and recombination in the germ line , 2021, Nature Communications.

[18]  E. Greene,et al.  DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. , 2021, Trends in genetics : TIG.

[19]  Zhou Zhou,et al.  Mrc1-Dependent Chromatin Compaction Represses DNA Double-Stranded Break Repair by Homologous Recombination Upon Replication Stress , 2021, Frontiers in Cell and Developmental Biology.

[20]  J. Duarte,et al.  Satellite DNA in Neotropical Deer Species , 2021, Genes.

[21]  Y. Gilad,et al.  A TAD Skeptic: Is 3D Genome Topology Conserved? , 2020, Trends in genetics : TIG.

[22]  Jilin Zhang,et al.  A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals , 2020, bioRxiv.

[23]  Jonas Paulsen,et al.  TAD cliques predict key features of chromatin organization , 2020, bioRxiv.

[24]  D. Rokhsar,et al.  Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution , 2020, Communications biology.

[25]  Worapong Singchat,et al.  Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution (Running Title: Genomic Impact of Repeats on Chromosomal Dynamics in Reptiles) , 2020, Genes.

[26]  T. Derrien,et al.  Multi-species annotation of transcriptome and chromatin structure in domesticated animals , 2019, BMC Biology.

[27]  A. Heck,et al.  High-Throughput Assessment of Kinome-wide Activation States , 2019, Cell systems.

[28]  R. Aiese Cigliano,et al.  Three-Dimensional Genomic Structure and Cohesin Occupancy Correlate with Transcriptional Activity during Spermatogenesis , 2019, Cell reports.

[29]  P. Sung,et al.  The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments , 2019, Nucleic acids research.

[30]  M. Nuriddinov,et al.  3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin , 2018, Nucleic acids research.

[31]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[32]  Ilya M. Flyamer,et al.  Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes , 2018, Journal of Cellular Biochemistry.

[33]  J. Rinn,et al.  Interchromosomal interactions: A genomic love story of kissing chromosomes , 2018, The Journal of cell biology.

[34]  R. O’Neill,et al.  Epigenetic maintenance of topological domains in the highly rearranged gibbon genome , 2018, Genome research.

[35]  Aristotelis Tsirigos,et al.  Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries , 2018, Nature Communications.

[36]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[37]  B. Lenhard,et al.  Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation , 2017, Nature Communications.

[38]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[39]  J. Gómez-Skarmeta,et al.  Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals , 2017, Wiley interdisciplinary reviews. Developmental biology.

[40]  Kin Chung Lam,et al.  High-resolution TADs reveal DNA sequences underlying genome organization in flies , 2017, Nature Communications.

[41]  Roger D. Kornberg,et al.  Stable Chromosome Condensation Revealed by Chromosome Conformation Capture , 2015, Cell.

[42]  J. Dekker,et al.  Structural and functional diversity of Topologically Associating Domains , 2015, FEBS letters.

[43]  T. Misteli,et al.  Long-Range Chromatin Interactions. , 2015, Cold Spring Harbor perspectives in biology.

[44]  Wei-Hien Cheong,et al.  ClicO FS: an interactive web-based service of Circos , 2015, Bioinform..

[45]  K. Hansen,et al.  Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data , 2015, Genome Biology.

[46]  Giacomo Cavalli,et al.  The Role of Chromosome Domains in Shaping the Functional Genome , 2015, Cell.

[47]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[48]  Noam Kaplan,et al.  The Hitchhiker's guide to Hi-C analysis: practical guidelines. , 2015, Methods.

[49]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[50]  Maitreya J. Dunham,et al.  Species-Level Deconvolution of Metagenome Assemblies with Hi-C–Based Contact Probability Maps , 2014, G3: Genes, Genomes, Genetics.

[51]  Edith Heard,et al.  Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods? , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  Daniel Ruiz,et al.  A Fast Algorithm for Matrix Balancing , 2013, Web Information Retrieval and Linear Algebra Algorithms.

[53]  J. Dekker,et al.  The hierarchy of the 3D genome. , 2013, Molecular cell.

[54]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[55]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[56]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[57]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[58]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[59]  E. Green,et al.  Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome , 2008, Genome Biology.

[60]  A. Miele,et al.  Long-range chromosomal interactions and gene regulation. , 2008, Molecular bioSystems.

[61]  Fengtang Yang,et al.  Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes , 2008, Genome Biology.

[62]  T. Glover,et al.  Chromosome fragile sites. , 2007, Annual review of genetics.

[63]  M. Ferguson-Smith,et al.  Mammalian karyotype evolution , 2007, Nature Reviews Genetics.

[64]  J. Wang,et al.  Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis , 2006, Chromosome Research.

[65]  Fengtang Yang,et al.  High-density comparative BAC mapping in the black muntjac (Muntiacus crinifrons): molecular cytogenetic dissection of the origin of MCR 1p+4 in the X1X2Y1Y2Y3 sex chromosome system. , 2006, Genomics.

[66]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[67]  J. Chi,et al.  Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping , 2005, Chromosoma.

[68]  R. O’Neill,et al.  Centromere dynamics and chromosome evolution in marsupials. , 2004, The Journal of heredity.

[69]  H. Scherthan,et al.  Characterization of ancestral chromosome fusion points in the Indian muntjac deer , 2004, Chromosoma.

[70]  Stephen J O'Brien,et al.  Evolution of mammalian genome organization inferred from comparative gene mapping , 2001, Genome Biology.

[71]  H. Lan,et al.  Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. , 2000, Molecular biology and evolution.

[72]  P. Slijepcevic Telomeres and mechanisms of Robertsonian fusion , 1998, Chromosoma.

[73]  D. Hill,et al.  Use of the Indian muntjac idiogram to align conserved chromosomal segments in sheep and human genomes by chromosome painting. , 1997, Genomics.

[74]  J. Wienberg,et al.  A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting , 1997, Chromosome Research.

[75]  Fengtang Yang,et al.  Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). , 1997, Genomics.

[76]  N. Carter,et al.  A comparative study of karyotypes of muntjacs by chromosome painting , 1995, Chromosoma.

[77]  D C Ward,et al.  Origin of human chromosome 2: an ancestral telomere-telomere fusion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[78]  C. Lin,et al.  New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs , 1991, Chromosoma.

[79]  Shi Li-ming,et al.  A New Karyotype of Muntjac (Muntiacus sp.) From Gongshan County in China , 1988 .

[80]  R. Moyzis,et al.  Fragile sites, telomeric DNA sequences, B chromosomes, and DNA content in raccoon dogs, Nyctereutes procyonoides, with comparative notes on foxes, coyote, wolf, and raccoon. , 1988, Cytogenetics and cell genetics.

[81]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[82]  N. Atkin,et al.  Muntjac chromosomes: A new karyotype forMuntiacus muntjak , 1972, Experientia.

[83]  K. Benirschke,et al.  Indian Momtjac, Muntiacus muntiak: A Deer with a Low Diploid Chromosome Number , 1970, Science.

[84]  K. Benirschke,et al.  Chromosome studies in some deer, the springbok, and the pronghorn, with notes on placentation in deer. , 1967, Cytologia.

[85]  T. Mackay,et al.  Charting the genotype–phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel , 2018, Wiley interdisciplinary reviews. Developmental biology.

[86]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[87]  R. Housley,et al.  Chromosome , 2011, Encyclopedia of Cryptography and Security.

[88]  C. Cremer NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS , 2001 .

[89]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[90]  C. Lin,et al.  Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. , 1993, Cytogenetics and cell genetics.

[91]  H. Kada,et al.  Confirmation of the Chromosomal Constitution of Fea's Muntjac, Muntiacus feae , 1987 .

[92]  H. Kada,et al.  The chromosomes of Muntiacus feae. , 1983, Cytogenetics and cell genetics.

[93]  S. Liming,et al.  Comparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids. , 1980, Cytogenetics and cell genetics.

[94]  D. Kubai,et al.  Chromosome structure. , 1970, Annual review of genetics.

[95]  I. Amit,et al.  Supporting Online Material Materials and Methods Som Text Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of the Human Genome , 2022 .