Six-dimensional Dirac equation

[1]  Smalley,et al.  Dirac equation in a six-dimensional spacetime: Temporal polarization for subluminal interactions. , 1985, Physical review. D, Particles and fields.

[2]  E. Cole,et al.  Six-dimensional relativity: Physical appearance of a particle whose time path changes , 1985 .

[3]  E. Cole Generation of new electromagnetic fields in six-dimensional special relativity , 1985 .

[4]  E. Recami,et al.  Formal and physical properties of the generalized (subluminal and superluminal) Lorentz transformations , 1986 .

[5]  J. Strnad Thomas precession in time , 1983 .

[6]  C. E. Patty Electromagnetic behavior in superluminal interactions: The classical electromagnetic Kepler problem , 1982 .

[7]  E. Cole,et al.  Space-time transformations in six-dimensional special relativity , 1982 .

[8]  M. Pavšič Unified kinematics of bradyons and tachyons in six-dimensional space-time , 1981 .

[9]  G. Ziino Three-dimensional time and Thomas precession , 1981 .

[10]  N. Weinberg ON SOME GENERALIZATIONS OF THE LORENTZ TRANSFORMATION , 1980 .

[11]  E. Cole Particle decay in six-dimensional relativity , 1980 .

[12]  G. Spinelli Against the necessity of a three-dimensional time , 1979 .

[13]  D. Ray Comment on “on the possibility of a three-temporal Lorentz transformation” , 1979 .

[14]  V. Vyšín Approach to tachyon monopoles in R6 space , 1978 .

[15]  G. Dattoli,et al.  Formulation of electromagnetism in a six dimensional space-time , 1978 .

[16]  E. Cole Superluminal transformations using either complex space-time or real space-time symmetry , 1977 .

[17]  P. Demers Symétrisation de la longueur et du temps dans un espace de Lorentz C3 en algèbre lineaire, pouvant servir en théorie trichromatique des couleurs , 1975 .

[18]  J. Dorling The Dimensionality of Time , 1970 .