Six-dimensional Dirac equation
暂无分享,去创建一个
[1] Smalley,et al. Dirac equation in a six-dimensional spacetime: Temporal polarization for subluminal interactions. , 1985, Physical review. D, Particles and fields.
[2] E. Cole,et al. Six-dimensional relativity: Physical appearance of a particle whose time path changes , 1985 .
[3] E. Cole. Generation of new electromagnetic fields in six-dimensional special relativity , 1985 .
[4] E. Recami,et al. Formal and physical properties of the generalized (subluminal and superluminal) Lorentz transformations , 1986 .
[5] J. Strnad. Thomas precession in time , 1983 .
[6] C. E. Patty. Electromagnetic behavior in superluminal interactions: The classical electromagnetic Kepler problem , 1982 .
[7] E. Cole,et al. Space-time transformations in six-dimensional special relativity , 1982 .
[8] M. Pavšič. Unified kinematics of bradyons and tachyons in six-dimensional space-time , 1981 .
[9] G. Ziino. Three-dimensional time and Thomas precession , 1981 .
[10] N. Weinberg. ON SOME GENERALIZATIONS OF THE LORENTZ TRANSFORMATION , 1980 .
[11] E. Cole. Particle decay in six-dimensional relativity , 1980 .
[12] G. Spinelli. Against the necessity of a three-dimensional time , 1979 .
[13] D. Ray. Comment on “on the possibility of a three-temporal Lorentz transformation” , 1979 .
[14] V. Vyšín. Approach to tachyon monopoles in R6 space , 1978 .
[15] G. Dattoli,et al. Formulation of electromagnetism in a six dimensional space-time , 1978 .
[16] E. Cole. Superluminal transformations using either complex space-time or real space-time symmetry , 1977 .
[17] P. Demers. Symétrisation de la longueur et du temps dans un espace de Lorentz C3 en algèbre lineaire, pouvant servir en théorie trichromatique des couleurs , 1975 .
[18] J. Dorling. The Dimensionality of Time , 1970 .