The analysis of optimization based controllers

Many control techniques employ on-line optimization in the determination of a control policy. We develop a framework which provides sufficient convex conditions, in the form of linear matrix inequalities, for the analysis of constrained quadratic based optimization schemes. These results encompass standard robustness analysis problems for a wide variety of receding horizon control schemes, including those with polytopic and structured uncertainty. A simple example illustrates the methodology.

[1]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[2]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[3]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  V. Yakubovich Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints , 1992 .

[8]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[9]  W. Kwon,et al.  On feedback stabilization of time-varying discrete linear systems , 1978 .

[10]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[11]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[12]  James A. Primbs,et al.  A framework for robustness analysis of constrained finite receding horizon control , 2000, IEEE Trans. Autom. Control..

[13]  A. Rantzer,et al.  System Analysis via Integral Quadratic Constraints. Part II , 1997 .

[14]  Manfred Morari,et al.  Model predictive control: Theory and practice , 1988 .

[15]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[16]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .