High-Speed Quantum-Dot Vertical-Cavity Surface-Emitting Lasers

We report on recent progress in high-speed quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs). Advanced types of QD media allow an ultrahigh modal gain, avoid temperature depletion, and gain saturation effects. Temperature robustness up to 100degC for 0.96-1.25 mum range devices is realized in the continuous wave (cw) regime. An open eye 20 Gb/s operation with bit error rates better than 10-12 has been achieved in a temperature range 25degC - 85degC without current adjustment. A different approach for ultrahigh-speed operation is based on a combination of the VCSEL section, operating in the CW mode with an additional section of the device, which is electrooptically modulated under a reverse bias. The tuning of a resonance wavelength of the second section, caused by the electrooptic effect, affects the transmission of the system. The approach enables ultrahigh-speed signal modulation. 60 GHz electrical and ~35 GHz optical (limited by the photodetector response) bandwidths are realized.

[1]  D.G. Deppe,et al.  Low-threshold continuous-wave operation of an oxide-confined vertical-cavity surface-emitting laser based on a quantum dot active region and half-wave cavity , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[2]  Friedhelm Hopfer,et al.  Vertical-cavity surface-emitting quantum-dot laser with low threshold current grown by metal-organic vapor phase epitaxy , 2006 .

[3]  Ben J. Stevens,et al.  p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency , 2006 .

[4]  P. Bhattacharya,et al.  Properties of a tunneling injection quantum-well laser: Recipe for 'cold' device with a large modulation bandwidth , 1993, IEEE Photonics Technology Letters.

[5]  Friedhelm Hopfer,et al.  Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors , 2002 .

[6]  S. Fathpour,et al.  Small-signal modulation characteristics of p-doped 1.1- and 1.3-/spl mu/m quantum-dot lasers , 2005, IEEE Photonics Technology Letters.

[7]  Roger King,et al.  Applications of VCSELs for optical interconnects , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[8]  Nikolai N. Ledentsov,et al.  Wavelength-stabilized tilted cavity quantum dot laser , 2004 .

[9]  Mikhail V. Maximov,et al.  High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .

[10]  Dieter Bimberg,et al.  Control of the electronic properties of CdSe submonolayer superlattices via vertical correlation of quantum dots , 1999 .

[11]  J. Yang,et al.  Growth and characteristics of ultralow threshold 1.45 μm metamorphic InAs tunnel injection quantum dot lasers on GaAs , 2006 .

[12]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[13]  P. Chiniwalla,et al.  Chip-to-chip optical interconnects , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[14]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[15]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[16]  L. Schares,et al.  160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects Using a Single-Chip CMOS IC , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[17]  Weinberg,et al.  Initial stages of InAs epitaxy on vicinal GaAs(001)-(2 x 4). , 1994, Physical review. B, Condensed matter.

[18]  Egorov,et al.  Structural characterization of (In,Ga)As quantum dots in a GaAs matrix. , 1995, Physical review. B, Condensed matter.

[19]  Mikhail V. Maximov,et al.  0.94 µm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots , 2000 .

[20]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[21]  Magnus Willander,et al.  Multiple wavelength electroluminescence and laser generation in p-i-n resonant tunneling heterostructures , 1998 .

[22]  Peter Michael Smowton,et al.  Temperature dependence of threshold current in p-doped quantum dot lasers , 2006 .

[23]  Y. Kwark,et al.  15.6 Gb/s transmission over 1 km of next generation multimode fiber , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[24]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[25]  H. Ishikawa,et al.  Lasing at three-dimensionally quantum-confined sublevel of self-organized In/sub 0.5/Ga/sub 0.5/As quantum dots by current injection , 1995, IEEE Photonics Technology Letters.

[26]  Matthias Kuntz,et al.  QD lasers: physics and applications , 2005, SPIE/OSA/IEEE Asia Communications and Photonics.

[27]  Peter Michael Smowton,et al.  Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers , 2002 .

[28]  Nikolai N. Ledentsov,et al.  Arrays of Two-Dimensional Islands Formed by Submonolayer Insertions: Growth, Properties, Devices , 2001 .

[29]  S.C. Wang,et al.  Single-mode monolithic quantum-dot VCSEL in 1.3 /spl mu/m with sidemode suppression ratio over 30 dB , 2006, IEEE Photonics Technology Letters.

[30]  D. Bimberg,et al.  20 Gb/s 85$^{\circ}$C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  C. Caneau,et al.  Cavity length and doping dependence of 1.5- mu m GaInAs/GaInAsP multiple quantum well laser characteristics , 1990, IEEE Photonics Technology Letters.

[32]  Friedhelm Hopfer,et al.  Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth , 2006 .

[33]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[34]  Dieter Bimberg,et al.  Enhanced radiation hardness of quantum dot lasers to high energy proton irradiation , 2001 .

[35]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[36]  Nikolai N. Ledentsov,et al.  Ordered arrays of quantum dots: Formation, electronic spectra, relaxation phenomena, lasing , 1996 .

[37]  Dieter Bimberg,et al.  Many-body effects on the optical spectra of InAs/GaAs quantum dots , 2000 .

[38]  H. Hatakeyama,et al.  25-Gbps operation of 1.1-/spl mu/m-range InGaAs VCSELs for high-speed optical interconnections , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[39]  N. Grote,et al.  Ultra-High-Bandwidth (>35 GHz) Electrooptically-Modulated VCSEL , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[40]  Nikolai N. Ledentsov,et al.  High-power singlemode CW operation of 1.5 /spl mu/m-range quantum dot GaAs-based laser , 2005 .

[41]  A. Paraskevopoulos High-Bandwidth VCSEL Devices , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[42]  Mikhail V. Maximov,et al.  Degradation-robust single mode continuous wave operation of 1.46μm metamorphic quantum dot lasers on GaAs substrate , 2006 .

[43]  Mikhail V. Maximov,et al.  InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm , 2000 .

[44]  C. Chang-Hasnain,et al.  Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber , 1998, IEEE Photonics Technology Letters.

[45]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[46]  Richard Schatz,et al.  Quest for very high speed VCSELs: pitfalls and clues , 2001, SPIE OPTO.

[47]  Friedhelm Hopfer,et al.  Quantum dot based photonic devices at 1.3 µm: Direct modulation, mode-locking, SOAs and VCSELs , 2006 .

[48]  A. N. Al-Omari,et al.  Low thermal resistance high-speed top-emitting 980-nm VCSELs , 2006, IEEE Photonics Technology Letters.

[49]  Diana L. Huffaker,et al.  Low threshold half-wave vertical-cavity lasers , 1994 .

[50]  G. Eisenstein,et al.  The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers , 2005, IEEE Journal of Quantum Electronics.

[51]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[52]  Serge Luryi,et al.  Tunneling-injection quantum-dot laser: ultrahigh temperature stability , 2001 .

[53]  Nikolai N. Ledentsov,et al.  3.9 W CW power from sub-monolayer quantum dot diode laser , 1999 .

[54]  Igor L. Krestnikov,et al.  Reliability study of InAs/InGaAs quantum dot diode lasers , 2005 .

[55]  D. Bimberg,et al.  Comments on "Lasing at three-dimensionally quantum-confined sublevel of self-organized In/sub 0.5/Ga/sub 0.5/As quantum dots by current injection" [and reply] , 1996 .

[56]  Daniel M. Kuchta,et al.  15.6-Gb/s transmission over 1 km of next generation multimode fiber , 2002 .

[57]  James A. Lott,et al.  Vertical cavity lasers based on vertically coupled quantum dots , 1997 .

[58]  Nikolai N. Ledentsov,et al.  Direct modulation and mode locking of 1.3 μm quantum dot lasers , 2004 .

[59]  L. Schares,et al.  Data Center and High Performance Computing Interconnects for 100 Gb/s and Beyond , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[60]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[61]  John E. Bowers,et al.  Comments on "Lasing at Three-Dimensionally Quantum-Confined Sublevel of Self-organized Ino,SGao.SAs Quantum Dots by Current Injection" , 1996 .

[62]  A. R. Kovsh,et al.  Novel concepts for ultrahigh-speed quantum-dot VCSELs and edge-emitters , 2007, SPIE OPTO.

[63]  Nikolai N. Ledentsov,et al.  Epitaxy of Nanostructures , 2003 .

[64]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .