First Report of Leaf Spot in Farfugium japonicum Caused by Alternaria alternata in China.
暂无分享,去创建一个
Farfugium japonicum (L.) Kitam (with the common name leopard plant) is known as a garden and medical herb, and belongs to the family Asteraceae. In May 2019, a leaf spot disease was observed on the upper leaf surface of F. japonicum in Changsha city, Hunan province, China. More than 98% of the F. japonicum plants were infected in a garden of Donghu district (28°13' N; 112°56' E). Leaf symptoms included small (1 to 10 mm in diameter), brown spots that were circular, tan to gray in the center and distinct brownish-yellow margins. Severely affected leaves were blighted and plants were dying. For isolation, symptomatic leaf tissue was surface sterilized, rinsed in sterile distilled water, and plated on potato dextrose agar (PDA) amended with a 50 μg/ml streptomycin sulfate followed by incubation at 25°C in darkness. By a single-spore isolation technique, pure fungal cultures were obtained and displayed gray-brown and gray-white aerial mycelia after five days of incubation. One representative isolate (HnAa-1) was selected for further studies. Conidia of HnAa-1 were olive brown, obpyriform, either branched or unbranched with a short beak, 1 to 5 transverse septa, and 0 to 3 longitudinal or oblique septa. The conidia were 10 to 35 μm long and 2 to 12 μm wide. HnAa-1 was identified as an Alternaria sp. on the basis on morphological characterization by Simmons (1). Further identification to species level was made by molecular analyses. DNA of HnAa-1 was extracted from the regions internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and partial Alt a 1 major allergen (ALT) gene. Amplification and sequencing was carried out with the method described by Woudenberg et al.(2) . BLASTn searches showed that the ITS, GAPDH and ALT sequences had the highest similarity with A. alternata strains, with 100% (548/548) identities for ITS (GQ169728), 100% (567/567) identities for GAPDH (MK903028) and 99.36% (466/469) identities for ALT (MN184998). Moreover, the ITS, GAPDH and ALT sequences had more than 99% identities with the epitype CBS 916.96 of A. alternata (ITS: AF347031; GAPDH: AY278808; ALT: AY563301). The ITS, GAPDH and ALT sequences of HnAa-1 were submitted to GenBank (Accession No. MT767170, No. MW115639 and No. MW316727). Pathogenicity tests were conducted by spraying a 10 ml conidial suspension (1.0 ×105 conidia /mL) on surfaces of leaves of three healthy plants (8-week-old). Leaves of three healthy plants were sprayed with sterile distilled water as a control treatment. All inoculated plants were maintained in growth chamber at 25°C with a 12-h photoperiod. The pathogenicity test was repeated twice. After five days inoculation, typical brown spots and necrotic lesions similar to those observed in the field, had developed on all inoculated plants but not on water-treated control plants. Alternaria alternata was re-isolated from the symptomatic tissue of inoculated plants but not from the control plants, and re-identified with morphological and molecular methods, which fulfilled Koch's postulates. This host-pathogen association has been reported in Korea (3), but it is the first report of A. alternata causing leaf spots on F. japonicum in China. Since A. alternata is a ubiquitous and very important plant pathogen causing leaf spot diseases in over 100 species plant, the occurrence of this disease is a serious threat to F.japonicum and might lead to economic losses. Therefore, appropriate prevention strategies to F.japonicum should be adopted.