Direct and Indirect Pathways of CdTeSe Magic-Size Cluster Isomerization Induced by Surface Ligands at Room Temperature

The field of isomerization reactions for colloidal semiconductor magic-size clusters (MSCs) remains largely unexplored. Here, we show that MSCs isomerize via two fundamental pathways that are regulated by the acidity and amount of an incoming ligand, with CdTeSe as the model system. When MSC-399 isomerizes to MSC-422 at room temperature, the peak red-shift from 399 to 422 nm is continuous (pathway 1) and/or stepwise (pathway 2) as monitored in situ and in real time by optical absorption spectroscopy. We propose that pathway 1 is direct, with intracluster configuration changes and a relatively large energy barrier. Pathway 2 is indirect, assisted by the MSC precursor compounds (PCs), from MSC-399 to PC-399 to PC-422 to MSC-422. Pathway 1 is activated when PC-422 to MSC-422 is suppressed. Our findings unambiguously suggest that when a change occurs directly on a nanospecies, its absorption peak continuously shifts. The present study provides an in-depth understanding of the transformative behavior of MSCs via ligand-induced isomerization upon external chemical stimuli.

[1]  Kui Yu,et al.  Transformations of Magic-Size Clusters via Precursor Compound Cation Exchange at Room Temperature. , 2022, Journal of the American Chemical Society.

[2]  Xi-Yan Dong,et al.  Atomically Precise Enantiopure Bimetallic Janus Clusters , 2022, ACS central science.

[3]  Kui Yu,et al.  Manipulating Reaction Intermediates to Aqueous-Phase  ZnSe Magic-Size Clusters and Quantum Dots at Room Temperature. , 2022, Angewandte Chemie.

[4]  A. Vartanian Some transformations happen within , 2022, Nature Reviews Materials.

[5]  Kui Yu,et al.  A Real-Time In-situ Demonstration of Direct and Indirect Transformation Pathways in CdTe Magic-size Clusters at Room Temperature. , 2022, Angewandte Chemie.

[6]  Kui Yu,et al.  Room-Temperature Evolution of Ternary CdTeS Magic-Size Clusters Exhibiting Sharp Absorption Peaking at 381 nm. , 2022, The journal of physical chemistry letters.

[7]  R. Buonsanti,et al.  Reaction intermediates in the synthesis of colloidal nanocrystals , 2022, Nature Synthesis.

[8]  Kui Yu,et al.  Transformation Pathway from CdSe Nanoplatelets with Absorption Doublets at 373/393 nm to Nanoplatelets at 434/460 nm. , 2022, The journal of physical chemistry letters.

[9]  Kui Yu,et al.  A Two‐Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic‐Size Clusters , 2022, Advanced materials.

[10]  A. Alivisatos,et al.  The role of organic ligand shell structures in colloidal nanocrystal synthesis , 2022, Nature Synthesis.

[11]  C. de Mello Donegá,et al.  Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from? , 2022, ACS Materials Au.

[12]  Kui Yu,et al.  Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. , 2021, Angewandte Chemie.

[13]  Kui Yu,et al.  Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. , 2021, Angewandte Chemie.

[14]  H. Häkkinen,et al.  Reversible Isomerization of Metal Nanoclusters Induced by Intermolecular Interaction , 2021, SSRN Electronic Journal.

[15]  J. Cheon,et al.  Why Do We Care about Studying Transformations in Inorganic Nanocrystals? , 2021, Accounts of chemical research.

[16]  Kui Yu,et al.  Reversible Transformations at Room Temperature among Three Types of CdTe Magic-Size Clusters. , 2021, Inorganic chemistry.

[17]  Kui Yu,et al.  Transformations Among Colloidal Semiconductor Magic-Size Clusters. , 2021, Accounts of chemical research.

[18]  T. Pons,et al.  Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. , 2021, Journal of the American Chemical Society.

[19]  A. Riedinger,et al.  Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals. , 2020, Journal of the American Chemical Society.

[20]  T. Hyeon,et al.  Magic-Sized Stoichiometric II-VI Nanoclusters. , 2020, Small.

[21]  Meng Chen,et al.  A Room-Temperature Formation Pathway for CdTeSe Alloy Magic-Size Clusters. , 2020, Angewandte Chemie.

[22]  C. Palencia,et al.  The Future of Colloidal Semiconductor Magic-Size Clusters. , 2020, ACS nano.

[23]  Jiao-Jiao Li,et al.  Isomerization in Alkynyl-Protected Gold Nanoclusters. , 2020, Journal of the American Chemical Society.

[24]  Kui Yu,et al.  Four Types of CdTe Magic-Size Clusters from One Prenucleation Stage Sample at Room Temperature. , 2019, The journal of physical chemistry letters.

[25]  M. Gijs,et al.  Spontaneous Formation of CdSe Photoluminescent Nanotubes with Visible-Light Photocatalytic Performance , 2019, ACS central science.

[26]  D. J. Lockwood,et al.  Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature , 2019, Nature Communications.

[27]  U. Banin,et al.  Chemically reversible isomerization of inorganic clusters , 2019, Science.

[28]  H. Fan,et al.  Precursor Self‐Assembly Identified as a General Pathway for Colloidal Semiconductor Magic‐Size Clusters , 2018, Advanced science.

[29]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[30]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[31]  Kui Yu,et al.  Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. , 2018, The journal of physical chemistry letters.

[32]  L. Kourkoutis,et al.  Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. , 2018, Journal of the American Chemical Society.

[33]  C. Pearson,et al.  Alkene Photo-Isomerization Inspired by Vision , 2017, ACS central science.

[34]  J. Ripmeester,et al.  Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311 , 2017 .

[35]  J. Ripmeester,et al.  Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots , 2017, Nature Communications.

[36]  S. Erwin,et al.  An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets , 2017, Nature materials.

[37]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[38]  R. Jin,et al.  Isomerism in Au28(SR)20 Nanocluster and Stable Structures. , 2016, Journal of the American Chemical Society.

[39]  Jinlong Yang,et al.  Structural isomserism in gold nanoparticles revealed by X-ray crystallography , 2015, Nature Communications.

[40]  I. Green,et al.  Isomerization of allylbenzenes. , 2015, Chemical reviews.

[41]  S. Sakaki,et al.  Isolation of a hydrogen-bridged bis(silylene) tungsten complex: a snapshot of a transition state for 1,3-hydrogen migration. , 2015, Journal of the American Chemical Society.

[42]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[43]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[44]  Raymond E Schaak,et al.  Emerging strategies for the total synthesis of inorganic nanostructures. , 2013, Angewandte Chemie.

[45]  E. Weiss,et al.  Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms. , 2012, Journal of the American Chemical Society.

[46]  B. Cossairt,et al.  CdSe Clusters: At the Interface of Small Molecules and Quantum Dots , 2011 .

[47]  D. Wei,et al.  DFT study on the mechanisms of stereoselective C2-vinylation of 1-substituted imidazoles with 3-phenyl-2-propynenitrile. , 2009, Journal of Physical Chemistry A.

[48]  Qichun Zhang,et al.  Chiral semiconductor frameworks from cadmium sulfide clusters. , 2007, Journal of the American Chemical Society.

[49]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[50]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[51]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[52]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[53]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[54]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[55]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .