The private classical capacity and quantum capacity of a quantum channel

A formula for the capacity of a quantum channel for transmitting private classical information is derived. This is shown to be equal to the capacity of the channel for generating a secret key, and neither capacity is enhanced by forward public classical communication. Motivated by the work of Schumacher and Westmoreland on quantum privacy and quantum coherence, parallels between private classical information and quantum information are exploited to obtain an expression for the capacity of a quantum channel for generating pure bipartite entanglement. The latter implies a new proof of the quantum channel coding theorem and a simple proof of the converse. The coherent information plays a role in all of the above mentioned capacities

[1]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[2]  Dagomir Kaszlikowski,et al.  Tomographic quantum cryptography , 2003 .

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[5]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[6]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[7]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[8]  S. Popescu,et al.  Classical analog of entanglement , 2001, quant-ph/0107082.

[9]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[10]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[12]  Hideki Imai,et al.  Commitment Capacity of Discrete Memoryless Channels , 2003, IMACC.

[13]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[14]  Michael D. Westmoreland,et al.  Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.

[15]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[17]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[18]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Andreas J. Winter,et al.  Distilling common randomness from bipartite quantum states , 2004, IEEE Transactions on Information Theory.

[20]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[21]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[25]  N. Gisin,et al.  Equivalence between two-qubit entanglement and secure key distribution. , 2003, Physical review letters.

[26]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[27]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[28]  U. Maurer The Strong Secret Key Rate of Discrete Random Triples , 1994 .

[29]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[30]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[31]  A. Winter ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.

[32]  Matthias Christandl,et al.  Tomographic quantum cryptography: equivalence of quantum and classical key distillation. , 2003, Physical review letters.

[33]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[34]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[35]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[36]  Benjamin Schumacher,et al.  Approximate Quantum Error Correction , 2002, Quantum Inf. Process..

[37]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[38]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[39]  Rainer Wilmink,et al.  Huge Quantum Broadcast Channels and Cryptographic Applications for Separable States , 2005, Electron. Notes Discret. Math..

[40]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[41]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.