Stratospheric heating by potential geoengineering aerosols

A fixed dynamical heating model is used to investigate the pattern of zonal‐mean stratospheric temperature change resulting from geoengineering with aerosols composed of sulfate, titania, limestone and soot. Aerosol always heats the tropical lower stratosphere, but at the poles the response can be either heating, cooling, or neutral. The sign of the change in stratospheric Pole‐Equator temperature difference depends on aerosol type, size and season. This has implications for modeling geoengineering impacts and the response of the stratospheric circulation.

[1]  J. D. Mahlman,et al.  Stratospheric Sensitivity to Perturbations in Ozone and Carbon Dioxide: Radiative and Dynamical Response. , 1980 .

[2]  R. Pueschel Stratospheric aerosols: Formation, properties, effects , 1996 .

[3]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[4]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[5]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[6]  V. Ramaswamy,et al.  Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response , 2000 .

[7]  Armando Blanco,et al.  The complex refractive index of limestone particles: an extension to the FIR range for Mars applications , 2002 .

[8]  V. Ramaswamy,et al.  Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion , 2002 .

[9]  M. Ketzel,et al.  Atmospheric number size distributions of soot particles and estimation of emission factors , 2005 .

[10]  M. Schnaiter,et al.  Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study , 2006 .

[11]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[12]  P. Rasch,et al.  An overview of geoengineering of climate using stratospheric sulphate aerosols , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Georgiy L. Stenchikov,et al.  Regional climate responses to geoengineering with tropical and Arctic SO2 injections , 2008 .

[14]  Ben Kravitz,et al.  Benefits, risks, and costs of stratospheric geoengineering , 2009 .

[15]  J. Shepherd,et al.  Geoengineering the Climate: Science, Governance and Uncertainty , 2009 .

[16]  Andrew Gettelman,et al.  Impact of geoengineered aerosols on the troposphere and stratosphere , 2009 .

[17]  D. Weisenstein,et al.  The impact of geoengineering aerosols on stratospheric temperature and ozone , 2009 .

[18]  J. I. Katz,et al.  Climate Engineering Responses to Climate Emergencies , 2009 .

[19]  Gareth Davies,et al.  Geoengineering the Climate: Science, Governance and Uncertainty , 2010 .

[20]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[21]  S. Dhomse,et al.  Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models , 2010 .

[22]  C. Timmreck,et al.  The dependency of geoengineered sulfate aerosol on the emission strategy , 2011 .

[23]  Peter Braesicke,et al.  Might dimming the sun change atmospheric ENSO teleconnections as we know them , 2011 .

[24]  R. Hommel,et al.  Modelling the size distribution of geoengineered stratospheric aerosols , 2011 .

[25]  A. Maycock,et al.  The temperature response to stratospheric water vapour changes , 2011 .

[26]  I. Jones Geoengineering the climate , 2011 .

[27]  Y. Fujii The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century , 2011 .