CMOS charge qubits and qudits: entanglement entropy and mutual information as an optimization method to construct CNOT and SWAP Gates

In this paper, we propose an optimization method for the construction of two-qubit and two-qudit quantum gates based on semiconductor position-based charge qubits. To describe the evolution of various quantum states, we use a Hubbard based model and Lindblad formalism. The suggested optimization algorithm uses the time evolution of entanglement entropy and mutual information for the determination of the system parameters to achieve high fidelity gates.

[1]  J. G. Muga,et al.  Qubit gates with simultaneous transport in double quantum dots , 2018, New Journal of Physics.

[2]  Robert Bogdan Staszewski,et al.  Simulation Methodology for Electron Transfer in CMOS Quantum Dots , 2020, ICCS.

[3]  D Mozyrsky,et al.  Relaxation and the Zeno effect in qubit measurements. , 2003, Physical review letters.

[4]  Tammy Pluym,et al.  A silicon metal-oxide-semiconductor electron spin-orbit qubit , 2018, Nature Communications.

[5]  P. Sen,et al.  All Optical Quantum CNOT Gate in Semiconductor Quantum Dots , 2009, IEEE Journal of Quantum Electronics.

[6]  Nisha Checka,et al.  FDSOI Process Technology for Subthreshold-Operation Ultralow-Power Electronics , 2010, Proceedings of the IEEE.

[7]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[8]  Dirk R. Leipold,et al.  A Fully Integrated DAC for CMOS Position-Based Charge Qubits with Single-Electron Detector Loopback Testing , 2020, IEEE Solid-State Circuits Letters.

[9]  Frank Tabakin,et al.  Model Dynamics for Quantum Computing , 2016, 1611.00664.

[10]  Robert Bogdan Staszewski,et al.  Photon Enhanced Interaction and Entanglement in Semiconductor Position-Based Qubits , 2019, Applied Sciences.

[11]  K. A. Valiev,et al.  Coherent charge qubits based on GaAs quantum dots with a built-in barrier , 2000 .

[12]  S. Coppersmith,et al.  Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise , 2018, npj Quantum Information.

[13]  J. Wendt,et al.  Probing low noise at the MOS interface with a spin-orbit qubit , 2017, 1707.04357.

[14]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[15]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[16]  Thomas Mathisen,et al.  Liouvillian of the Open STIRAP Problem , 2016, Entropy.

[17]  J. Petta,et al.  Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates , 2019, npj Quantum Information.

[18]  John Preskill,et al.  Quantum Shannon Theory , 2016, 1604.07450.

[19]  C. K. Maiti,et al.  Introducing Technology Computer-Aided Design (Tcad): Fundamentals, Simulations, and Applications , 2017 .

[20]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[21]  C. Emary Quantum dynamics in nonequilibrium environments , 2008, 0804.4869.

[22]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[23]  Dirk R. Leipold,et al.  A Single-Electron Injection Device for CMOS Charge Qubits Implemented in 22-nm FD-SOI , 2020, IEEE Solid-State Circuits Letters.

[24]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[25]  Gernot Schaller,et al.  Open Quantum Systems Far from Equilibrium , 2014 .

[26]  Guang-Can Guo,et al.  Conditional rotation of two strongly coupled semiconductor charge qubits , 2015, Nature Communications.

[27]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[28]  S. Coppersmith,et al.  Adiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits , 2018, npj Quantum Information.

[29]  S. Das Sarma,et al.  Generic Hubbard model description of semiconductor quantum dot spin qubits , 2011, 1101.3311.

[30]  Robert Bogdan Staszewski,et al.  CMOS Position-Based Charge Qubits: Theoretical Analysis of Control and Entanglement , 2019, IEEE Access.

[31]  Ian R. Petersen,et al.  Learning robust pulses for generating universal quantum gates , 2016, Scientific Reports.

[32]  Sahar Daraeizadeh,et al.  Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[33]  S. Das Sarma,et al.  Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in Si double quantum dots , 2011, 1103.5460.