Ultra-incompressible phases of tungsten dinitride predicted from first principles

Using ab initio evolutionary methodology for crystal structure prediction, we have found two ultra-incompressible hexagonal structures of $P{6}_{3}/mmc$ and $P\text{\ensuremath{-}}6m2$ of ${\text{WN}}_{2}$, which are energetically much superior to previously proposed baddeleyite- and cotunnite-type structures and stable against decomposition into a mixture of $\text{W}+{\text{N}}_{2}$ or $\text{WN}+1/2{\text{N}}_{2}$. The calculated large bulk modulus (e.g., 411 GPa) and high hardness (36.8 GPa for $P{6}_{3}/mmc$ and 36.6 GPa for $P\text{\ensuremath{-}}6m2$) reveal that they are ultra-incompressible and hard materials. The ultra-incompressibility is attributed to a staking of N-W-N ``sandwiches'' layers linked by strong covalent N-N single bonding. Thermodynamic study suggests that these phases are synthesizable at above 30 GPa.

[1]  Yanming Ma,et al.  Transparent dense sodium , 2009, Nature.

[2]  Yanming Ma,et al.  Novel high pressure structures of polymeric nitrogen. , 2009, Physical review letters.

[3]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[4]  Yanming Ma,et al.  Superconducting high pressure phase of germane. , 2008, Physical review letters.

[5]  Yanming Ma,et al.  High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm , 2008 .

[6]  A. Oganov,et al.  Evolutionary crystal structure prediction as a tool in materials design , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Babak Sadigh,et al.  Thermodynamic ground states of platinum metal nitrides. , 2007, Physical review letters.

[8]  Yanming Ma,et al.  Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε-ζ phase transition : Ab initio simulations , 2007 .

[9]  A. Simunek,et al.  How to estimate hardness of crystals on a pocket calculator , 2007 .

[10]  Ab initio study of monoclinic iridium nitride as a high bulk modulus compound , 2007 .

[11]  Zhongyuan Liu,et al.  Crystal structure and physical properties of OsN 2 and PtN 2 in the marcasite phase , 2007 .

[12]  Qian Zhan,et al.  Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2. , 2007, Angewandte Chemie.

[13]  B. Sadigh,et al.  Synthesis and characterization of nitrides of iridium and palladium , 2008 .

[14]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[15]  P. McMillan,et al.  High-pressure chemistry of nitride-based materials. , 2006, Chemical Society reviews.

[16]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[17]  Richard Dronskowski,et al.  Mysterious platinum nitride. , 2006, Angewandte Chemie.

[18]  B. Douglas,et al.  Structure and Chemistry of Crystalline Solids , 2006 .

[19]  Sandro Scandolo,et al.  Synthesis of novel transition metal nitrides IrN2 and OsN2. , 2006, Physical review letters.

[20]  M. Lazzeri,et al.  Interstitial dinitrogen makes PtN2 an insulating hard solid , 2006 .

[21]  Babak Sadigh,et al.  Synthesis and Characterization of the Nitrides of Platinum and Iridium , 2006, Science.

[22]  Qian Zhan,et al.  Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor , 2006 .

[23]  A. Oganov,et al.  High-pressure phases of CaCO3: Crystal structure prediction and experiment , 2006 .

[24]  L. Kochian Author to whom correspondence should be addressed , 2006 .

[25]  P. Kroll,et al.  Prediction of novel phases of tantalum(V) nitride and tungsten(VI) nitride that can be synthesized under high pressure and high temperature. , 2005, Angewandte Chemie.

[26]  Russell J. Hemley,et al.  Synthesis and characterization of a binary noble metal nitride , 2004, Nature materials.

[27]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[28]  R. Riedel,et al.  Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure , 2003, Nature materials.

[29]  Vadim V. Brazhkin,et al.  Harder than diamond: Dreams and reality , 2002 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  S. Louie,et al.  Electronic mechanism of hardness enhancement in transition-metal carbonitrides , 1998, Nature.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[35]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[36]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[37]  E. Fluck,et al.  Gmelins Handbuch der anorganischen Chemie , 1936, Nature.