Solving a large dense linear system by adaptive cross approximation

An efficient algorithm for the direct solution of a linear system associated with the discretization of boundary integral equations (in two dimensions) is described without having to compute the complete matrix of the linear system. This algorithm is based on the unitary-weight representation, for which a new construction based on adaptive cross approximation is proposed. This low rank approximation uses only a small part of the entries to construct the adaptive cross representation, and therefore the linear system can be solved efficiently.

[1]  M. Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation , 2006 .

[2]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[3]  Eugene E. Tyrtyshnikov,et al.  Matrix‐free iterative solution strategies for large dense linear systems , 1997 .

[4]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[5]  Alex Yu. Yeremin,et al.  Matrix-free iterative solution strategies for large dense linear systems , 1997, Numer. Linear Algebra Appl..

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  Marc Van Barel,et al.  A QR-Based Solver for Rank Structured Matrices , 2008, SIAM J. Matrix Anal. Appl..

[8]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[9]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[10]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[11]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[12]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[13]  S. Goreinov,et al.  Pseudo-skeleton approximations by matrices of maximal volume , 1997 .

[14]  Marc Van Barel,et al.  A Givens-Weight Representation for Rank Structured Matrices , 2007, SIAM J. Matrix Anal. Appl..

[15]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[16]  Faculteit Ingenieurswetenschappen,et al.  MULTISCALE AND HYBRID METHODS FOR THE SOLUTION OF OSCILLATORY INTEGRAL EQUATIONS , 2006 .

[17]  R. Kanwal Linear Integral Equations , 1925, Nature.

[18]  Stefan Kurz,et al.  Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems , 2003 .

[19]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[20]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[21]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[22]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .