Blind intensity estimation from shot-noise data

The estimation of the intensity function of an inhomogeneous Poisson process is considered when the observable data consists of sampled shot noise that results from passing the Poisson process through an unknown linear time-invariant system. The proposed method consists of first estimating a histogram of the underlying point process. The estimated histogram is used to construct a kernel estimate of the intensity function. An estimate of the unknown impulse response of the linear time-invariant system is constructed via a regularized backsubstitution of a discrete-time convolution with the estimated histogram.

[1]  H. Heijmans Morphological image operators , 1994 .

[2]  Sherman Karp,et al.  Optical Communications , 1976 .

[3]  Alfred O. Hero,et al.  Time delay estimation for filtered Poisson processes using an EM-type algorithm , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  B. C. McCallum Blind deconvolution by simulated annealing , 1990 .

[5]  James R. Fienup,et al.  Iterative blind deconvolution algorithm applied to phase retrieval , 1990 .

[6]  E. Parzen 1. Random Variables and Stochastic Processes , 1999 .

[7]  Robert Stanton,et al.  Radiological Imaging: The Theory of Image Formation, Detection, and Processing , 1983 .

[8]  G. Michael Morris,et al.  Pattern Recognition Using Photon-Limited Images , 1989, Other Conferences.

[9]  A. Murat Tekalp,et al.  Identification of image and blur parameters for the restoration of noncausal blurs , 1986, IEEE Trans. Acoust. Speech Signal Process..

[10]  G. M. Morris,et al.  11 – Pattern Recognition Using Photon-Limited Images , 1989 .

[11]  Naoshi Baba,et al.  Extended-object reconstruction with sequential use of the iterative blind deconvolution method , 1992 .

[12]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[13]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[14]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[15]  H. Mine,et al.  Bispectral Analysis Of Filtered Impulse Processes With Applications To The Analysis Of Bioelectric Phenomena , 1989, Workshop on Higher-Order Spectral Analysis.

[16]  Richard G. Lane,et al.  Automatic multidimensional deconvolution , 1987 .

[17]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[18]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[19]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[20]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[21]  R. H. T. Bates,et al.  Some implications of zero sheets for blind deconvolution and phase retrieval , 1990 .

[22]  Richard G. Lane,et al.  Direct phase retrieval , 1987, IEEE Trans. Acoust. Speech Signal Process..

[23]  J. Marron,et al.  Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation , 1988 .

[24]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[25]  Raúl E. Sequeira,et al.  Intensity estimation from shot-noise data , 1995, IEEE Trans. Signal Process..

[26]  Richard G. Lane,et al.  Blind deconvolution of noisy complex-valued image , 1989 .

[27]  M. Cannon Blind deconvolution of spatially invariant image blurs with phase , 1976 .

[28]  R. Fesce,et al.  Miniature endplate potential frequency and amplitude determined by an extension of Campbell's theorem. , 1985, Biophysical journal.

[29]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[30]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[31]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[32]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[33]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.