Blind intensity estimation from shot-noise data
暂无分享,去创建一个
[1] H. Heijmans. Morphological image operators , 1994 .
[2] Sherman Karp,et al. Optical Communications , 1976 .
[3] Alfred O. Hero,et al. Time delay estimation for filtered Poisson processes using an EM-type algorithm , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[4] B. C. McCallum. Blind deconvolution by simulated annealing , 1990 .
[5] James R. Fienup,et al. Iterative blind deconvolution algorithm applied to phase retrieval , 1990 .
[6] E. Parzen. 1. Random Variables and Stochastic Processes , 1999 .
[7] Robert Stanton,et al. Radiological Imaging: The Theory of Image Formation, Detection, and Processing , 1983 .
[8] G. Michael Morris,et al. Pattern Recognition Using Photon-Limited Images , 1989, Other Conferences.
[9] A. Murat Tekalp,et al. Identification of image and blur parameters for the restoration of noncausal blurs , 1986, IEEE Trans. Acoust. Speech Signal Process..
[10] G. M. Morris,et al. 11 – Pattern Recognition Using Photon-Limited Images , 1989 .
[11] Naoshi Baba,et al. Extended-object reconstruction with sequential use of the iterative blind deconvolution method , 1992 .
[12] Ehud Weinstein,et al. New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.
[13] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[14] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[15] H. Mine,et al. Bispectral Analysis Of Filtered Impulse Processes With Applications To The Analysis Of Bioelectric Phenomena , 1989, Workshop on Higher-Order Spectral Analysis.
[16] Richard G. Lane,et al. Automatic multidimensional deconvolution , 1987 .
[17] F. O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems , 1986 .
[18] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[19] T J Holmes,et al. Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.
[20] Timothy J. Schulz,et al. Multiframe blind deconvolution of astronomical images , 1993 .
[21] R. H. T. Bates,et al. Some implications of zero sheets for blind deconvolution and phase retrieval , 1990 .
[22] Richard G. Lane,et al. Direct phase retrieval , 1987, IEEE Trans. Acoust. Speech Signal Process..
[23] J. Marron,et al. Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation , 1988 .
[24] Donald L. Snyder,et al. Random Point Processes in Time and Space , 1991 .
[25] Raúl E. Sequeira,et al. Intensity estimation from shot-noise data , 1995, IEEE Trans. Signal Process..
[26] Richard G. Lane,et al. Blind deconvolution of noisy complex-valued image , 1989 .
[27] M. Cannon. Blind deconvolution of spatially invariant image blurs with phase , 1976 .
[28] R. Fesce,et al. Miniature endplate potential frequency and amplitude determined by an extension of Campbell's theorem. , 1985, Biophysical journal.
[29] J. C. Dainty,et al. Iterative blind deconvolution method and its applications , 1988 .
[30] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[31] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[32] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[33] T. M. Cannon,et al. Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.