The reality of mathematics and the case of set theory

[1]  Richard Milton Martin Intension and Decision: A Philosophical Study , 1966 .

[2]  Thomas Weston,et al.  Kreisel, the continuum hypothesis and second order set theory , 1976, J. Philos. Log..

[3]  C. Luther,et al.  INDEPENDENCE OF THE CONTINUUM HYPOTHESIS , 2009 .

[4]  J R Steel,et al.  Projective determinacy. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Imre Lakatos,et al.  Problems in the Philosophy of Mathematics , 1969 .

[6]  A. Kanamori The higher infinite : large cardinals in set theory from their beginnings , 2005 .

[7]  Gregory H. Moore Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .

[8]  R. L. Goodstein,et al.  On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.

[9]  H. Darmon A Proof of the Full Shimura-Taniyama-Weil Conjecture Is Announced , 1999 .

[10]  Jouko A. Väänänen,et al.  Second-Order Logic and Foundations of Mathematics , 2001, Bulletin of Symbolic Logic.

[11]  Stewart Shapiro,et al.  The Oxford Handbook of Philosophy of Mathematics and Logic , 2005, Oxford handbooks in philosophy.

[12]  G. Cantor,et al.  Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .

[13]  H. Putnam What is mathematical truth , 1975 .

[14]  J. Paris,et al.  Accessible Independence Results for Peano Arithmetic , 1982 .

[15]  Jukka Keränen,et al.  The Identity Problem for Realist Structuralism , 2001 .

[16]  G. Cantor,et al.  Ein Beitrag zur Mannigfaltigkeitslehre. , 1878 .

[17]  E. López-Escobar A complete, infinitary axiomatization of weak second-order logic , 1967 .

[18]  Thomas E. Forster,et al.  THE ITERATIVE CONCEPTION OF SET , 2008, The Review of Symbolic Logic.

[19]  F. R. Drake,et al.  Set theory : an introduction to large cardinals , 1974 .

[20]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[21]  Harvey M. Friedman,et al.  Higher set theory and mathematical practice , 1971 .

[22]  G. Kreisel Informal Rigour and Completeness Proofs , 1967 .

[23]  A. Oliver A Realistic Rationalism? , 2000 .

[24]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[25]  Bertrand Russell,et al.  Bertrand Russell: Philosopher of the Century , 1967 .

[26]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[27]  P. Bernays What Do Some Recent Results in Set Theory Suggest , 1967 .

[28]  Geoffrey Hellman,et al.  Mathematics without Numbers: Towards a Modal-Structural Interpretation , 1989 .

[29]  L. Corry The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond , 1997, Science in Context.

[30]  F K North,et al.  Essays on the Theory of Numbers: I. Continuity and Irrational Numbers, II. the Nature and Meaning of Numbers , 2009 .

[31]  John P. Burgess,et al.  A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics , 2001 .

[32]  George Boolos,et al.  Between Logic and Intuition: Must We Believe in Set Theory? , 2000 .

[33]  R. Dedekind Essays on the theory of numbers , 1963 .

[34]  Charles Parsons,et al.  The structuralist view of mathematical objects , 1990, Synthese.

[35]  Leo Corry,et al.  Nicolas Bourbaki and the concept of mathematical structure , 1992, Synthese.

[36]  Michael D. Resnik,et al.  Mathematical Knowledge and Pattern Cognition , 1975 .

[37]  Stewart Shapiro,et al.  Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i† , 2007 .

[38]  Reuben Hersh,et al.  Non-Cantorian Set Theory , 1967 .

[39]  Stewart Shapiro,et al.  Second-order languages and mathematical practice , 1985, Journal of Symbolic Logic.

[40]  Vann McGee,et al.  How We Learn Mathematical Language , 1997 .

[41]  Paul Benacerraf,et al.  What the numbers could not be , 1983 .

[42]  D. Isaacson,et al.  Arithmetical truth and hidden higher-order concepts , 1985, Logic Colloquium.

[43]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[44]  Mahesh Viswanathan Second Order Logic , 2004 .

[45]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[46]  Sidneyf Elder,et al.  ELEMENTS OF SET THEORY , 1995 .

[47]  J. L. Austin,et al.  The foundations of arithmetic : a logico-mathematical enquiry into the concept of number , 1951 .