The reality of mathematics and the case of set theory
暂无分享,去创建一个
[1] Richard Milton Martin. Intension and Decision: A Philosophical Study , 1966 .
[2] Thomas Weston,et al. Kreisel, the continuum hypothesis and second order set theory , 1976, J. Philos. Log..
[3] C. Luther,et al. INDEPENDENCE OF THE CONTINUUM HYPOTHESIS , 2009 .
[4] J R Steel,et al. Projective determinacy. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[5] Imre Lakatos,et al. Problems in the Philosophy of Mathematics , 1969 .
[6] A. Kanamori. The higher infinite : large cardinals in set theory from their beginnings , 2005 .
[7] Gregory H. Moore. Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .
[8] R. L. Goodstein,et al. On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.
[9] H. Darmon. A Proof of the Full Shimura-Taniyama-Weil Conjecture Is Announced , 1999 .
[10] Jouko A. Väänänen,et al. Second-Order Logic and Foundations of Mathematics , 2001, Bulletin of Symbolic Logic.
[11] Stewart Shapiro,et al. The Oxford Handbook of Philosophy of Mathematics and Logic , 2005, Oxford handbooks in philosophy.
[12] G. Cantor,et al. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .
[13] H. Putnam. What is mathematical truth , 1975 .
[14] J. Paris,et al. Accessible Independence Results for Peano Arithmetic , 1982 .
[15] Jukka Keränen,et al. The Identity Problem for Realist Structuralism , 2001 .
[16] G. Cantor,et al. Ein Beitrag zur Mannigfaltigkeitslehre. , 1878 .
[17] E. López-Escobar. A complete, infinitary axiomatization of weak second-order logic , 1967 .
[18] Thomas E. Forster,et al. THE ITERATIVE CONCEPTION OF SET , 2008, The Review of Symbolic Logic.
[19] F. R. Drake,et al. Set theory : an introduction to large cardinals , 1974 .
[20] S. Shapiro. Philosophy of mathematics : structure and ontology , 1997 .
[21] Harvey M. Friedman,et al. Higher set theory and mathematical practice , 1971 .
[22] G. Kreisel. Informal Rigour and Completeness Proofs , 1967 .
[23] A. Oliver. A Realistic Rationalism? , 2000 .
[24] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[25] Bertrand Russell,et al. Bertrand Russell: Philosopher of the Century , 1967 .
[26] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[27] P. Bernays. What Do Some Recent Results in Set Theory Suggest , 1967 .
[28] Geoffrey Hellman,et al. Mathematics without Numbers: Towards a Modal-Structural Interpretation , 1989 .
[29] L. Corry. The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond , 1997, Science in Context.
[30] F K North,et al. Essays on the Theory of Numbers: I. Continuity and Irrational Numbers, II. the Nature and Meaning of Numbers , 2009 .
[31] John P. Burgess,et al. A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics , 2001 .
[32] George Boolos,et al. Between Logic and Intuition: Must We Believe in Set Theory? , 2000 .
[33] R. Dedekind. Essays on the theory of numbers , 1963 .
[34] Charles Parsons,et al. The structuralist view of mathematical objects , 1990, Synthese.
[35] Leo Corry,et al. Nicolas Bourbaki and the concept of mathematical structure , 1992, Synthese.
[36] Michael D. Resnik,et al. Mathematical Knowledge and Pattern Cognition , 1975 .
[37] Stewart Shapiro,et al. Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i† , 2007 .
[38] Reuben Hersh,et al. Non-Cantorian Set Theory , 1967 .
[39] Stewart Shapiro,et al. Second-order languages and mathematical practice , 1985, Journal of Symbolic Logic.
[40] Vann McGee,et al. How We Learn Mathematical Language , 1997 .
[41] Paul Benacerraf,et al. What the numbers could not be , 1983 .
[42] D. Isaacson,et al. Arithmetical truth and hidden higher-order concepts , 1985, Logic Colloquium.
[43] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[44] Mahesh Viswanathan. Second Order Logic , 2004 .
[45] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[46] Sidneyf Elder,et al. ELEMENTS OF SET THEORY , 1995 .
[47] J. L. Austin,et al. The foundations of arithmetic : a logico-mathematical enquiry into the concept of number , 1951 .