Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems With Input and Output Constraints

The article extends a recently presented approach to feedforward control design for nonlinear systems to additionally account for input and output constraints. The inversion-based design treats a finite-time transition problem as a two-point boundary value problem (BVP) in the coordinates of the input-output normal form. To account for constraints on the output and its time derivatives, the input-output dynamics is replaced by a new system, which is systematically constructed by means of saturation functions. The solvability of the BVP requires a sufficient number of free parameters in an ansatz function. The resulting BVP with free parameters can be solved in a straightforward manner (e.g., with the Matlab function bvp4c). Input constraints can additionally be considered as constraints on the highest output derivative. The approach is applicable to nonlinear and nonminimum-phase systems, which is illustrated for the side-stepping of an inverted pendulum on a cart.

[1]  Katsuhisa Furuta,et al.  Robust swing up control of double pendulum , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[2]  Knut Graichen,et al.  Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems with Input and Output Constraints , 2006, IEEE Transactions on Automatic Control.

[3]  Costas Kravaris,et al.  Nonlinear model-state feedback control for nonminimum-phase processes , 2003, Autom..

[4]  M. Vidyasagar,et al.  Algebraic design techniques for reliable stabilization , 1982 .

[5]  S. Shankar Sastry,et al.  Bounded tracking for non-minimum phase nonlinear systems with fast zero dynamics , 1997 .

[6]  Veit Hagenmeyer,et al.  Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen (Flatness-based Design of Linear and Nonlinear Feedforward Controls) , 2004 .

[7]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[8]  N. Petit,et al.  Control of an industrial polymerization reactor using flatness , 2002 .

[9]  Mark B. Milam,et al.  Inversion Based Constrained Trajectory Optimization , 2001 .

[10]  Knut Graichen,et al.  MOTION PLANNING AND FEEDFORWARD CONTROL FOR DISTRIBUTED PARAMETER SYSTEMS UNDER INPUT CONSTRAINTS , 2005 .

[11]  Lawrence F. Shampine,et al.  A BVP solver based on residual control and the Maltab PSE , 2001, TOMS.

[12]  B. Paden,et al.  Stable inversion of nonlinear non-minimum phase systems , 1996 .

[13]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[14]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[15]  A. Packard,et al.  A collection of robust control problems leading to LMIs , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[16]  P. Rouchon,et al.  2k/spl pi/, the juggling robot , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[17]  Song Li,et al.  Stable inversion of continuous-time nonlinear systems by finite-difference methods , 2002, IEEE Trans. Autom. Control..

[18]  Katsuhisa Furuta,et al.  Swing Up Control of a Double Pendulum , 1993, 1993 American Control Conference.

[19]  Wei Zhong,et al.  Energy and passivity based control of the double inverted pendulum on a cart , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[20]  Aurelio Piazzi,et al.  Optimal noncausal set-point regulation of scalar systems , 2001, Autom..

[21]  Mouhacine Benosman,et al.  Stable inversion of SISO nonminimum phase linear systems through output planning: an experimental application to the one-link flexible manipulator , 2003, IEEE Trans. Control. Syst. Technol..

[22]  Veit Hagenmeyer,et al.  Comparative evaluation of nonlinear model predictive and flatness-based two-degree-of-freedom control design in view of industrial application , 2007 .

[23]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[24]  M. Zeitz,et al.  Feedforward control design for finite-time transition problems of non-linear MIMO systems under input constraints , 2008, Int. J. Control.

[25]  H. Ito,et al.  Design of stable controllers attaining low Hinfinity weighted sensitivity , 1993, IEEE Trans. Autom. Control..

[26]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[27]  A. Isidori Nonlinear Control Systems , 1985 .

[28]  Dominique Bonvin,et al.  Robust predictive control based on neighboring extremals , 2004 .

[29]  Veit Hagenmeyer,et al.  Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an extended Kalman filter approach , 2008, Int. J. Control.

[30]  Veit Hagenmeyer,et al.  Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output , 2004, Syst. Control. Lett..

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  H. Keller Numerical Methods for Two-Point Boundary-Value Problems , 1993 .

[33]  Li-Chen Fu,et al.  Passivity based control of the double inverted pendulum driven by a linear induction motor , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[34]  S. Engell,et al.  Nonlinear Control of a Non-Minimum-Phase CSTR , 1993, 1993 American Control Conference.

[35]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[36]  Knut Graichen,et al.  Nonlinear feedforward and feedback tracking control with input constraints solving the pendubot swin , 2005 .

[37]  R. Murray,et al.  Configuration Flatness of Lagrangian Systems Underactuated by One Control , 1998 .

[38]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[39]  Charles Robert Koch,et al.  Flatness-Based Feedback Control of an Automotive Solenoid Valve , 2007, IEEE Transactions on Control Systems Technology.

[40]  Costas Kravaris,et al.  Nonlinear Model-Based Control of Nonminimum-Phase Processes , 1998 .

[41]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[42]  Richard M. Murray,et al.  Feasible trajectories of linear dynamic systems with inequality constraints using higher-order representations , 1999 .

[43]  Rogelio Lozano,et al.  Energy based control of the Pendubot , 2000, IEEE Trans. Autom. Control..

[44]  I. Horowitz Synthesis of feedback systems , 1963 .

[45]  Winfried Auzinger,et al.  Efficient Collocation Schemes for Singular Boundary Value Problems , 2004, Numerical Algorithms.

[46]  Lawrence F. Shampine,et al.  Solving ODEs with MATLAB , 2002 .

[47]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[48]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[49]  William E. Schiesser The numerical method of lines , 1991 .

[50]  Wolfgang Marquardt,et al.  Flatness and higher order differential model representations in dynamic optimization , 2002 .

[51]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[52]  Kurt Dirk Bettenhausen Kontinuierlicher Rührkesselreaktor mit Neben- und Folgereaktionen , 1993 .

[53]  Katsuhisa Furuta,et al.  Control of unstable mechanical system Control of pendulum , 1976 .

[54]  J. V. Vusse Plug-flow type reactor versus tank reactor , 1964 .

[55]  G. A. Medrano-Cerda,et al.  Robust stabilization of a triple inverted pendulum-cart , 1997 .

[56]  Qingze Zou,et al.  Preview-based inversion of nonlinear nonminimum-phase systems: VTOL example , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[57]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[58]  Yeng Chai Soh,et al.  Synthesis of stable H∞ controller via the chain scattering framework , 2002, Syst. Control. Lett..

[59]  Veit Hagenmeyer,et al.  Feedforward control with online parameter estimation applied to the Chylla–Haase reactor benchmark , 2006 .

[60]  J. Murray,et al.  Fractional representation, algebraic geometry, and the simultaneous stabilization problem , 1982 .

[61]  James Lam,et al.  Stable controller synthesis for linear time-invariant systems , 2002 .

[62]  A. Kugi,et al.  Feedforward and Feedback Tracking Control of a 3DOF Helicopter Experiment under Input and Output Constraints , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[63]  Andreas Kugi,et al.  Modeling and flatness-based control of a 3d of helicopter laboratory experiment , 2004 .

[64]  Knut Graichen,et al.  A new approach to feedforward control design under output constraints applied to the side-stepping o , 2006 .

[65]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .

[66]  Knut Graichen,et al.  Swing-up of the double pendulum on a cart by feedforward and feedback control with experimental validation , 2007, Autom..

[67]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[68]  Veit Hagenmeyer,et al.  Van de vusse CSTR as a benchmark problem for nonlinear feedforward control design techniques , 2004 .

[69]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[70]  R. Brockett,et al.  The reproducibility of multivariable systems , 1964 .

[71]  M. Zeitz,et al.  Adaptive Feedforward Control with Parameter Estimation for the Chylla-Haase Polymerization Reactor , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[72]  Ralf Rothfuß Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme , 1997 .

[73]  Leonardo Lanari,et al.  Rest-to-Rest Motion for Planar Multi-Link Flexible Manipulator Through Backward Recursion , 2004 .

[74]  J. Baxley Nonlinear Two Point Boundary Value Problems , 1968 .

[75]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[76]  Thierry Miquel,et al.  Flatness-based improved relative guidance maneuvers for commercial aircraft , 2005 .

[77]  Corrado Guarino Lo Bianco,et al.  Nonlinear filters for the generation of smooth trajectories , 2000, Autom..

[78]  Santosh Devasia,et al.  Output tracking between operating points for nonlinear processes: Van de Vusse example , 2002, IEEE Trans. Control. Syst. Technol..

[79]  Veit Hagenmeyer,et al.  A new approach to inversion-based feedforward control design for nonlinear systems , 2005, Autom..

[80]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[81]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[82]  M. Zeitz,et al.  Feedforward control design under input constraints for a tubular reactor model , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[83]  Gustavo A. Medrano-Cerda,et al.  Discrete-time H∞ control of a triple inverted pendulum with single control input , 1999 .

[84]  W. Grantham,et al.  Lyapunov optimal feedback control of a nonlinear inverted pendulum , 1989 .

[85]  Kazuhiro Kosuge,et al.  Digital control of a double inverted pendulum on an inclined rail , 1980 .

[86]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[87]  K. Åström,et al.  A New Strategy for Swinging Up an Inverted Pendulum , 1993 .

[88]  M. Zeitz,et al.  Fast Side-Stepping of the Triple Inverted Pendulum via Constrained Nonlinear Feedforward Control Design , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[89]  L. Silverman Inversion of multivariable linear systems , 1969 .

[90]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .