Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals

Probabilistic team semantics is a framework for logical analysis of probabilistic dependencies. Our focus is on the complexity and expressivity of probabilistic inclusion logic and its extensions. We identify a natural fragment of existential second-order logic with additive real arithmetic that captures exactly the expressivity of probabilistic inclusion logic. We furthermore relate these formalisms to linear programming, and doing so obtain PTIME data complexity for the logics. Moreover, on finite structures, we show that the full existential secondorder logic with additive real arithmetic can only express NP properties.

[1]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[2]  Lukasz Kaiser,et al.  Machine Learning with Guarantees using Descriptive Complexity and SMT Solvers , 2016, ArXiv.

[3]  Stephan Kreutzer,et al.  Descriptive Complexity Theory for Constraint Databases , 1999, CSL.

[4]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[5]  Stephan Kreutzer Fixed-point query languages for linear constraint databases , 2000, PODS '00.

[6]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[7]  Klaus Meer,et al.  Two logical hierarchies of optimization problems over the real numbers , 2005, Math. Log. Q..

[8]  Leonid Libkin,et al.  Queries with Arithmetic on Incomplete Databases , 2020, PODS.

[9]  Klaus Meer,et al.  Logics Which Capture Complexity Classes Over The Reals , 1999, J. Symb. Log..

[10]  Gianluca Paolini,et al.  A logic for arguing about probabilities in measure teams , 2017, Arch. Math. Log..

[11]  Yuri Gurevich,et al.  Metafinite Model Theory , 1994, LCC.

[12]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[13]  Juha Kontinen,et al.  On Definability in Dependence Logic , 2009, J. Log. Lang. Inf..

[14]  Martin Grohe,et al.  Learning first-order definable concepts over structures of small degree , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[15]  Jonni Virtema,et al.  Descriptive complexity of real computation and probabilistic independence logic , 2020, LICS.

[16]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2011, Fundam. Informaticae.

[17]  Szymon Toru'nczyk,et al.  Aggregate Queries on Sparse Databases , 2019, PODS.

[18]  Michael Benedikt,et al.  Reachability and connectivity queries in constraint databases , 2000, J. Comput. Syst. Sci..

[19]  Lauri Hella,et al.  Inclusion Logic and Fixed Point Logic , 2013, CSL.

[20]  Arne Meier,et al.  Approximation and dependence via multiteam semantics , 2015, Annals of Mathematics and Artificial Intelligence.

[21]  Marcus Schaefer,et al.  Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.

[22]  Pietro Galliani,et al.  Game values and equilibria for undetermined sentences of Dependence Logic , 2008 .

[23]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[24]  Jonni Virtema,et al.  Facets of Distribution Identities in Probabilistic Team Semantics , 2019, JELIA.

[25]  Klaus Meer Counting problems over the reals , 2000, Theor. Comput. Sci..

[26]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[27]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.

[28]  Nicole Schweikardt,et al.  Learning Concepts Described by Weight Aggregation Logic , 2021, CSL.

[29]  Felipe Cucker,et al.  Counting complexity classes for numeric computations II: algebraic and semialgebraic sets , 2003, STOC '04.

[30]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[31]  Arne Meier,et al.  Probabilistic team semantics , 2018, FoIKS.

[32]  Klaus Meer,et al.  Descriptive complexity theory over the real numbers , 1995, STOC '95.