An approach to evaluate the accuracy of interatomic potentials as applied to tungsten

[1]  G. Chechin,et al.  One-component delocalized nonlinear vibrational modes of square lattices , 2023, Nonlinear Dynamics.

[2]  S. Melin,et al.  Atomistic investigation of the impact of phosphorus impurities on the tungsten grain boundary decohesion , 2023, Computational Materials Science.

[3]  S. Dudarev,et al.  Microstructure of a heavily irradiated metal exposed to a spectrum of atomic recoils , 2022, Scientific Reports.

[4]  A. Kotri,et al.  Atomistic insights into the effect of cooling rates on the structural and mechanical properties of Vanadium monatomic metallic glass , 2022, Chinese Journal of Physics.

[5]  Ruxin Zheng,et al.  Grain Boundary Migration as a Self-Healing Mechanism of Tungsten at High Temperature , 2022, Metals.

[6]  K. Nordlund,et al.  Efficient atomistic simulations of radiation damage in W and W-Mo using machine-learning potentials , 2022, Journal of Nuclear Materials.

[7]  Z. Dong,et al.  Effects of cutting force on formation of subsurface damage during nano-cutting of single crystal tungsten , 2022, Journal of Manufacturing Science and Engineering.

[8]  S. Dmitriev,et al.  Highly efficient energy and mass transfer in bcc metals by supersonic 2-crowdions , 2022, Journal of Nuclear Materials.

[9]  S. Melin,et al.  Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten , 2022, Computational Materials Science.

[10]  D. Morgan,et al.  Machine learning in nuclear materials research , 2022, Current Opinion in Solid State and Materials Science.

[11]  F. J. Domínguez-Gutiérrez,et al.  Temperature effects on the point defects formation in [111] W by neutron induced collision cascade , 2022, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[12]  D. Poletaev,et al.  The N-body interatomic potential for molecular dynamics simulations of diffusion in tungsten , 2022, Computational Materials Science.

[13]  S.A. Shcherbinin,et al.  Delocalized nonlinear vibrational modes in fcc metals , 2022, Commun. Nonlinear Sci. Numer. Simul..

[14]  G. Bonny,et al.  Analysis of hypervelocity impacts: the tungsten case , 2021, Nuclear Fusion.

[15]  Shijun Zhao Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials , 2021, Journal of Nuclear Materials.

[16]  S. Dudarev,et al.  Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten , 2021, Journal of Nuclear Materials.

[17]  M. Geers,et al.  Modelling the brittle-to-ductile transition of high-purity tungsten under neutron irradiation , 2021 .

[18]  P. Sahoo,et al.  Design of experiment analysis of elevated temperature wear of Mg-WC nano-composites , 2021, Reports in Mechanical Engineering.

[19]  G. Chechin,et al.  Exact solutions of nonlinear dynamical equations for large-amplitude atomic vibrations in arbitrary monoatomic chains with fixed ends , 2021, Commun. Nonlinear Sci. Numer. Simul..

[20]  C. Weinberger,et al.  Modeling twin boundary structures in body centered cubic transition metals , 2021 .

[21]  Volker L. Deringer,et al.  Gaussian Process Regression for Materials and Molecules , 2021, Chemical reviews.

[22]  K. Nordlund,et al.  Molecular dynamics simulations of high-dose damage production and defect evolution in tungsten , 2021 .

[23]  C. Domain,et al.  Modelling the primary damage in Fe and W: influence of the short-range interactions on the cascade properties: Part 2 – multivariate multiple linear regression analysis of displacement cascades , 2021 .

[24]  S. Valvano,et al.  BCC lattice cell structural characterization , 2021, Reports in Mechanical Engineering.

[25]  C. Domain,et al.  Modelling the primary damage in Fe and W: Influence of the short range interactions on the cascade properties: Part 1 – Energy transfer , 2021 .

[26]  Changsong Liu,et al.  Accurate prediction of vacancy cluster structures and energetics in bcc transition metals , 2021 .

[27]  S. Dmitriev,et al.  Delocalized nonlinear vibrational modes of triangular lattices , 2020, Nonlinear Dynamics.

[28]  G. Chechin,et al.  Introduction to the theory of bushes of nonlinear normal modes for studying large-amplitude atomic vibrations in systems with discrete symmetry , 2020, Letters on Materials.

[29]  S. Dmitriev,et al.  Dynamics of supersonic N-crowdions in fcc metals , 2020 .

[30]  I. Lobzenko,et al.  Spherically localized discrete breathers in bcc metals V and Nb , 2020 .

[31]  H. Urbassek,et al.  Vibrational and magnetic signatures of extended defects in Fe , 2020, The European Physical Journal B.

[32]  V. Stegailov,et al.  Nanobubbles diffusion in bcc uranium: Theory and atomistic modelling , 2020 .

[33]  H. Deng,et al.  Evaluation of tungsten interatomic potentials for radiation damage simulations , 2020, Tungsten.

[34]  R. Schäublin,et al.  Stability of small vacancy clusters in tungsten by molecular dynamics , 2020 .

[35]  Z. Zeng,et al.  Key factors in radiation tolerance of BCC metals under steady state , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[36]  Elena A. Korznikova,et al.  Effect of Discrete Breathers on the Specific Heat of a Nonlinear Chain , 2019, Journal of Nonlinear Science.

[37]  W. Ko,et al.  Ductility enhancement of tungsten after plastic deformation , 2019, Journal of Alloys and Compounds.

[38]  G. Sha,et al.  Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium , 2019, Acta Materialia.

[39]  A. Parashar,et al.  Atomistic simulations to study crack tip behaviour in single crystal of bcc niobium and hcp zirconium , 2019, Current Applied Physics.

[40]  K. Zhou,et al.  Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure , 2018, physica status solidi (b).

[41]  D. Nguyen-Manh,et al.  Nano-sized prismatic vacancy dislocation loops and vacancy clusters in tungsten , 2018, Nuclear Materials and Energy.

[42]  Jiangwei Wang,et al.  Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires , 2018, Science Advances.

[43]  G. Sparks,et al.  Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals , 2018 .

[44]  Nicola Marzari,et al.  Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.

[45]  M. Short,et al.  Breaking the power law: Multiscale simulations of self-ion irradiated tungsten , 2018, Journal of Nuclear Materials.

[46]  H. Deng,et al.  New interatomic potentials of W, Re and W-Re alloy for radiation defects , 2018 .

[47]  A. Parashar,et al.  Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium , 2018 .

[48]  H. Deng,et al.  Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading , 2017 .

[49]  S. Dmitriev,et al.  Localized vibrational modes in diamond , 2017 .

[50]  A. Beléndez,et al.  Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities , 2016 .

[51]  A. Lipnitskiĭ,et al.  Development of n-body expansion interatomic potentials and its application for V , 2016 .

[52]  K. Zhou,et al.  Discrete breathers in alpha-uranium , 2016 .

[53]  N. Marzari,et al.  Vibrational and thermoelastic properties of bcc iron from selected EAM potentials , 2016, Computational Materials Science.

[54]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[55]  S. Shcherbinin,et al.  Nonlinear vibrational modes in graphene: group-theoretical results , 2016, 1601.05200.

[56]  Sergey Starikov,et al.  Investigation of point defects diffusion in bcc uranium and U–Mo alloys , 2015 .

[57]  S. Dmitriev,et al.  Moving discrete breathers in bcc metals V, Fe and W , 2015 .

[58]  G. Bonny,et al.  Many-body central force potentials for tungsten , 2014 .

[59]  Yanlin Zhou,et al.  A modified W–W interatomic potential based on ab initio calculations , 2013, 1306.4738.

[60]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[61]  C. Domain,et al.  Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model , 2010 .

[62]  T. Ahlgren,et al.  Bond-order potential for point and extended defect simulations in tungsten , 2010 .

[63]  P. Olsson Semi-empirical atomistic study of point defect properties in BCC transition metals , 2009 .

[64]  Andrey V. Gorbach,et al.  Discrete breathers — Advances in theory and applications , 2008 .

[65]  R. Car,et al.  Interatomic potential for vanadium suitable for radiation damage simulations , 2003 .

[66]  Hong-Bo Zhou,et al.  Special Topic , 1994, PMLA/Publications of the Modern Language Association of America.

[67]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[68]  B. N. Brockhouse,et al.  Lattice vibrations in tungsten at 22 °C studied by neutron scattering , 1976 .

[69]  V. Gohel,et al.  On the phonon dispersion in tungsten , 1976 .

[70]  Sow-Hsin Chen,et al.  Lattice vibrations of tungsten , 1964 .

[71]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[72]  Y. Bebikhov,et al.  Effect of interatomic potentials on dynamics of supersonic 2-crowdions in tungsten , 2022, MATHEMATICS EDUCATION AND LEARNING.

[73]  S. Dmitriev,et al.  Chaotic discrete breathers and their effect on macroscopic properties of triangular lattice , 2022, Commun. Nonlinear Sci. Numer. Simul..

[74]  S. Dmitriev,et al.  Surface discrete breathers in Pt3Al intermetallic alloy , 2019, Surface Science.

[75]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[76]  Yuri S. Kivshar,et al.  Localizing Energy Through Nonlinearity and Discreteness , 2004 .

[77]  G. M. Chechin,et al.  COMPUTERS AND GROUP-THEORETICAL METHODS FOR STUDYING STRUCTURAL PHASE TRANSITIONS , 1989 .