Exploiting structure in large-scale electrical circuit and power system problems
暂无分享,去创建一个
[1] A. Spence,et al. Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..
[2] Karl Meerbergen,et al. Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..
[3] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[4] T. Stykel. Analysis and Numerical Solution of Generalized Lyapunov Equations , 2002 .
[5] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[6] Joel R. Phillips,et al. Poor man's TBR: a simple model reduction scheme , 2004 .
[7] Nelson Martins,et al. Computing dominant poles of power system transfer functions , 1996 .
[8] Joost Rommes,et al. Computing Large-Scale System Eigenvalues Most Sensitive to Parameter Changes, With Applications to Power System Small-Signal Stability , 2008, IEEE Transactions on Power Systems.
[9] Daniel Sundström,et al. Mathematics in industry , 1985 .
[10] Tatjana Stykel,et al. Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..
[11] Roland W. Freund. SPRIM: structure-preserving reduced-order interconnect macromodeling , 2004, ICCAD 2004.
[12] Joost Rommes,et al. Efficient computation of transfer function dominant poles of large second-order dynamical systems , 2007 .
[13] Danny C. Sorensen,et al. Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..
[14] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[15] A. Spence,et al. Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .
[16] Jacob K. White,et al. Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..
[17] Joost Rommes,et al. Computing Transfer Function Dominant Poles of Large-Scale Second-Order Dynamical Systems , 2008, SIAM J. Sci. Comput..
[18] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .
[19] Joost Rommes,et al. Computing a partial generalized real Schur form using the Jacobi-Davidson method , 2007, Numer. Linear Algebra Appl..
[20] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[21] Gerard L. G. Sleijpen,et al. Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..
[22] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[23] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[24] C. Tomei,et al. Spectral Transformation Algorithms for Computing Unstable Modes of Large Scale Power Systems , 2010, 1006.5428.
[25] R. Lehoucq,et al. Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .
[26] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[27] N. Martins,et al. Coordinated Stabilizer Tuning in Large Power Systems Considering Multiple Operating Conditions , 2007, 2007 IEEE Power Engineering Society General Meeting.
[28] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[29] C. W. Bomhof. Jacobi-Davidson methods for eigenvalue problems in pole zero analysis , 2009 .
[30] Ulrike Baur,et al. Control-Oriented Model Reduction for Parabolic Systems , 2008 .
[31] Joost Rommes,et al. Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..
[32] N. Martins,et al. Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.
[33] Peter Benner,et al. Dimension Reduction of Large-Scale Systems , 2005 .
[34] N. Martins. Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies , 1986, IEEE Transactions on Power Systems.
[35] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[36] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[37] H. V. D. Vorst,et al. Quadratic eigenproblems are no problem , 1996 .
[38] Fan Yang,et al. RLC equivalent circuit synthesis method for structure-preserved reduced-order model of interconnect in VLSI , 2008 .
[39] Gene H. Golub,et al. Matrix computations , 1983 .
[40] H. H. Happ,et al. Power System Control and Stability , 1979, IEEE Transactions on Systems, Man, and Cybernetics.