Exploiting structure in large-scale electrical circuit and power system problems

Abstract The rapid increase in complexity of systems such as electrical circuits and power systems calls for the development of efficient numerical methods. In many cases, direct application of standardized methods for numerical problems is computationally not feasible or inefficient. However, the performance of such methods can be improved considerably by taking into account the structure of the underlying problem. In this paper, we describe when and how this – mathematical and/or physical – structure can be exploited to arrive at efficient algorithms that also suffer less from other numerical issues such as round-off errors. Eigenvalue and stability problems are considered in particular, but applications to other problems are shown as well.

[1]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[2]  Karl Meerbergen,et al.  Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..

[3]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[4]  T. Stykel Analysis and Numerical Solution of Generalized Lyapunov Equations , 2002 .

[5]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[6]  Joel R. Phillips,et al.  Poor man's TBR: a simple model reduction scheme , 2004 .

[7]  Nelson Martins,et al.  Computing dominant poles of power system transfer functions , 1996 .

[8]  Joost Rommes,et al.  Computing Large-Scale System Eigenvalues Most Sensitive to Parameter Changes, With Applications to Power System Small-Signal Stability , 2008, IEEE Transactions on Power Systems.

[9]  Daniel Sundström,et al.  Mathematics in industry , 1985 .

[10]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[11]  Roland W. Freund SPRIM: structure-preserving reduced-order interconnect macromodeling , 2004, ICCAD 2004.

[12]  Joost Rommes,et al.  Efficient computation of transfer function dominant poles of large second-order dynamical systems , 2007 .

[13]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[14]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[15]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[16]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[17]  Joost Rommes,et al.  Computing Transfer Function Dominant Poles of Large-Scale Second-Order Dynamical Systems , 2008, SIAM J. Sci. Comput..

[18]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[19]  Joost Rommes,et al.  Computing a partial generalized real Schur form using the Jacobi-Davidson method , 2007, Numer. Linear Algebra Appl..

[20]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[21]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[22]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[23]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[24]  C. Tomei,et al.  Spectral Transformation Algorithms for Computing Unstable Modes of Large Scale Power Systems , 2010, 1006.5428.

[25]  R. Lehoucq,et al.  Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .

[26]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[27]  N. Martins,et al.  Coordinated Stabilizer Tuning in Large Power Systems Considering Multiple Operating Conditions , 2007, 2007 IEEE Power Engineering Society General Meeting.

[28]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[29]  C. W. Bomhof Jacobi-Davidson methods for eigenvalue problems in pole zero analysis , 2009 .

[30]  Ulrike Baur,et al.  Control-Oriented Model Reduction for Parabolic Systems , 2008 .

[31]  Joost Rommes,et al.  Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..

[32]  N. Martins,et al.  Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.

[33]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[34]  N. Martins Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies , 1986, IEEE Transactions on Power Systems.

[35]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[36]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[37]  H. V. D. Vorst,et al.  Quadratic eigenproblems are no problem , 1996 .

[38]  Fan Yang,et al.  RLC equivalent circuit synthesis method for structure-preserved reduced-order model of interconnect in VLSI , 2008 .

[39]  Gene H. Golub,et al.  Matrix computations , 1983 .

[40]  H. H. Happ,et al.  Power System Control and Stability , 1979, IEEE Transactions on Systems, Man, and Cybernetics.