Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate

The aim of this paper is to derive a reduced model for a piezoelectric plate and to study its actuator and sensor capabilities. In the first part, we focus on the asymptotic modeling for thin plates formed by stacking layers of different piezoelectric materials. In the asymptotic model, the mechanical and electric unknowns are shown to be partly decoupled. In the second part, we study the actuator and sensor capabilities of this model. We use two discrete non-differentiable multi-objective optimization problems, which are solved by genetic algorithms. Several numerical results are reported.

[1]  A. Raoult,et al.  Modelling of piezoelectric plates including magnetic effects , 2003 .

[2]  R. J. Wynne,et al.  Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms , 1999 .

[3]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells: Part III: From the patches to the active structures , 2003 .

[4]  Gérard A. Maugin,et al.  AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES , 1990 .

[5]  A. Sène,et al.  Modelling of piezoelectric static thin plates , 2001 .

[6]  Gennady Mishuris,et al.  Piezoelectricity in multi-layer actuators Modelling and analysis in two and three dimensions , 2003 .

[7]  Lino A. Costa,et al.  An elitist genetic algorithm for multiobjective optimization , 2004 .

[8]  P. G. Ciarlet,et al.  Theory of plates , 1997 .

[9]  Laura Menini,et al.  On actuators/sensors placement for collocated flexible plates , 2003 .

[10]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  D. Osmont,et al.  New Thin Piezoelectric Plate Models , 1998 .

[13]  Sven Klinkel,et al.  A geometrically non‐linear piezoelectric solid shell element based on a mixed multi‐field variational formulation , 2006 .

[14]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[15]  Isabel N. Figueiredo,et al.  A piezoelectric anisotropic plate model , 2004 .

[16]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[17]  Isabel N. Figueiredo,et al.  Actuator Effect of a Piezoelectric Anisotropic Plate Model , 2006 .

[18]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[21]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells. Part I: The continuous problems , 2003 .

[22]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells: Part II: Approximation by finite element methods and numerical experiments , 2003 .

[23]  S. O. Reza Moheimani,et al.  An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate , 2003 .

[24]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[25]  Bernadette Miara,et al.  Two‐dimensional models for geometrically nonlinear thin piezoelectric shells , 2002 .