Clustering-based nonlinear dimensionality reduction on manifold
暂无分享,去创建一个
[1] Matti Pietikäinen,et al. Incremental locally linear embedding , 2005, Pattern Recognit..
[2] Amitabha Mukerjee,et al. Non-linear Dimensionality Reduction by Locally Linear Isomaps , 2004, ICONIP.
[3] Mukund Balasubramanian,et al. The Isomap Algorithm and Topological Stability , 2002, Science.
[4] Matti Pietikäinen,et al. Supervised Locally Linear Embedding , 2003, ICANN.
[5] Joshua B. Tenenbaum,et al. Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.
[6] Fabrizio Sebastiani,et al. Machine learning in automated text categorization , 2001, CSUR.
[7] Jian Xiao,et al. Self-organized Locally Linear Embedding for Nonlinear Dimensionality Reduction , 2005, ICNC.
[8] M. Loog,et al. Local Fisher embedding , 2004, ICPR 2004.
[9] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[10] Changshui Zhang,et al. Exploring the structure of supervised data by Discriminant Isometric Mapping , 2005, Pattern Recognit..
[11] Maja J. Mataric,et al. A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.
[12] Dimitrios Charalampidis,et al. A modified k-means algorithm for circular invariant clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[14] Li Yang. Building k edge-disjoint spanning trees of minimum total length for isometric data embedding , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] Lawrence K. Saul,et al. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..
[16] Andrew Beng Jin Teoh,et al. Fusion of Locally Linear Embedding and Principal Component Analysis for Face Recognition (FLLEPCA) , 2005, ICAPR.
[17] Zhi-Hua Zhou,et al. Supervised nonlinear dimensionality reduction for visualization and classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[18] Houkuan Huang,et al. Selection of the Optimal Parameter Value for the ISOMAP Algorithm , 2005, MICAI.
[19] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[20] Paul L. Rosin,et al. Selection of the optimal parameter value for the Isomap algorithm , 2006, Pattern Recognit. Lett..
[21] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[22] Matti Pietikäinen,et al. Selection of the Optimal Parameter value for the Locally Linear Embedding Algorithm , 2002, FSKD.
[23] Anil K. Jain,et al. Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Dimitrios Gunopulos,et al. Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.
[25] Zhi-Hua Zhou,et al. Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition , 2004, SINOBIOMETRICS.