Causes and consequences of end-Ediacaran extinction – an update

Since the 1980s, the existence of one or more extinction events in the late Ediacaran has been the subject of debate. Discussion surrounding these events has intensified in the last decade, in concert with efforts to understand drivers of global change over the Ediacaran – Cambrian transition and the appearance of the more modern-looking Phanerozoic biosphere. In this paper we review the history of thought and work surrounding late Ediacaran extinctions, with a particular focus on the last 5 years of paleontological, geochemical, and geochronological research. We consider the extent to which key questions have been answered, and pose new questions which will help to characterize drivers of environmental and biotic change. A key challenge for future work will be the calculation of extinction intensities that account for limited sampling, the duration ofEdiacaran ‘ assemblage ’ zones, and the preponderance oftaxa restricted to a single ‘ assemblage ’ ; without these data, the extent to which Ediacaran bioevents represent genuine mass extinctions comparable to the ‘ Big 5 ’ extinctions of the Phanerozoic remains to be rigorously tested. Lastly, we propose a revised model for drivers of late Ediacaran extinction pulses that builds off recent

[1]  J. Schiffbauer,et al.  The role of iron in the formation of Ediacaran ‘death masks’ , 2023, Geobiology.

[2]  D. Bottjer,et al.  Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems , 2023, Geobiology.

[3]  N. Marshall,et al.  Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Eyster,et al.  The Ediacaran−Cambrian transition in the southern Great Basin, United States , 2022, GSA Bulletin.

[5]  P. Wilby,et al.  A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK , 2022, Nature Ecology & Evolution.

[6]  M. Simões,et al.  A New Conulariid (Cnidaria, Scyphozoa) From the Terminal Ediacaran of Brazil , 2022, Frontiers in Earth Science.

[7]  N. Planavsky,et al.  Biofilms as agents of Ediacara-style fossilization , 2022, Scientific Reports.

[8]  S. Xiao,et al.  A new approach for investigating spatial relationships of ichnofossils: a case study of Ediacaran–Cambrian animal traces , 2022, Paleobiology.

[9]  Imran A. Rahman,et al.  The life and times of Pteridinium simplex , 2022, Paleobiology.

[10]  Katie M. Maloney,et al.  Paleontology and ichnology of the late Ediacaran Nasep–Huns transition (Nama Group, southern Namibia) , 2022, Journal of Paleontology.

[11]  A. Manica,et al.  Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period , 2022, PLoS biology.

[12]  Jennifer F. Hoyal Cuthill Ediacaran survivors in the Cambrian: suspicions, denials and a smoking gun , 2022, Geological Magazine.

[13]  D. Dorjnamjaa,et al.  Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran–Cambrian boundary , 2022, Earth-Science Reviews.

[14]  F. Macdonald,et al.  Global and local drivers of the Ediacaran Shuram carbon isotope excursion , 2022, Earth and Planetary Science Letters.

[15]  J. Ramezani,et al.  Pushing the boundary: A calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa , 2022, Earth and Planetary Science Letters.

[16]  M. Leng,et al.  Extensive primary production promoted the recovery of the Ediacaran Shuram excursion , 2022, Nature Communications.

[17]  M. Leng,et al.  Extensive primary production promoted the recovery of the Ediacaran Shuram excursion , 2022, Nature Communications.

[18]  R. Wood,et al.  Calibrating the temporal and spatial dynamics of the Ediacaran - Cambrian radiation of animals , 2021, Earth-Science Reviews.

[19]  H. Hua,et al.  Enduring evolutionary embellishment of cloudinids in the Cambrian , 2021, Royal Society Open Science.

[20]  F. Macdonald,et al.  The tempo of Ediacaran evolution , 2021, Science advances.

[21]  A. Liu,et al.  Palaeolatitudinal distribution of the Ediacaran macrobiota , 2021, Journal of the Geological Society.

[22]  F. Macdonald,et al.  Fingerprinting local controls on the Neoproterozoic carbon cycle with the isotopic record of Cryogenian carbonates in the Panamint Range, California , 2021, Earth and Planetary Science Letters.

[23]  P. Donoghue,et al.  The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs , 2021, Science Advances.

[24]  R. Carroll,et al.  Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction , 2021 .

[25]  E. Grădinaru,et al.  U–Pb geochronology and Hf isotope systematics of detrital zircon from the late Ediacaran Kalyus Beds (East European Platform): palaeogeographic evolution of southwestern Baltica and constraints on the Ediacaran biota , 2021, Precambrian Research.

[26]  J. Gehling,et al.  Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities , 2021, Scientific Reports.

[27]  S. Xiao,et al.  Dickinsonia from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China , 2021 .

[28]  S. K. Lyons,et al.  Mammal species occupy different climates following the expansion of human impacts , 2021, Proceedings of the National Academy of Sciences.

[29]  I. Butler,et al.  Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion , 2021, Science Advances.

[30]  D. Schrag,et al.  Effect of dolomitization on isotopic records from Neoproterozoic carbonates in southwestern Mongolia , 2020 .

[31]  S. Xiao,et al.  The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition , 2020, Journal of the Geological Society.

[32]  J. Hagadorn,et al.  A link between rift-related volcanism and end-Ediacaran extinction? Integrated chemostratigraphy, biostratigraphy, and U-Pb geochronology from Sonora, Mexico , 2020, Geology.

[33]  D. McIlroy,et al.  A Chronostratigraphic Framework for the Rise of the Ediacaran Macrobiota: New Constraints from Mistaken Point Ecological Reserve, Newfoundland , 2020, GSA Bulletin.

[34]  Zhong‐Qiang Chen,et al.  Transient and stepwise ocean oxygenation during the late Ediacaran Shuram Excursion: Insights from carbonate δ238U of northwestern Mexico , 2020 .

[35]  E. Sperling,et al.  Calibrating the coevolution of Ediacaran life and environment , 2020, Proceedings of the National Academy of Sciences.

[36]  Thilo Gross,et al.  Diverse interactions and ecosystem engineering can stabilize community assembly , 2020, Nature Communications.

[37]  M. G. Mángano,et al.  The rise and early evolution of animals: where do we stand from a trace-fossil perspective? , 2020, Interface Focus.

[38]  A. Curtis,et al.  Multiple branching and attachment structures in cloudinomorphs, Nama Group, Namibia , 2020, Geology.

[39]  M. K. Bensalah,et al.  The Central Iapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation , 2020, Mass Extinctions, Volcanism, and Impacts: New Developments.

[40]  A. Knoll,et al.  Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle , 2020, American Journal of Science.

[41]  J. Schiffbauer,et al.  Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids , 2020, Scientific Reports.

[42]  J. Schiffbauer,et al.  Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period , 2020, Nature Communications.

[43]  P. Hoffman,et al.  Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans , 2019, Proceedings of the National Academy of Sciences.

[44]  S. Xiao,et al.  Death march of a segmented and trilobate bilaterian elucidates early animal evolution , 2019, Nature.

[45]  M. Laflamme,et al.  Increase in metazoan ecosystem engineering prior to the Ediacaran–Cambrian boundary in the Nama Group, Namibia , 2019, Royal Society Open Science.

[46]  A. Anbar,et al.  Global marine redox changes drove the rise and fall of the Ediacara biota , 2019, Geobiology.

[47]  Imran A. Rahman,et al.  Gregarious suspension feeding in a modular Ediacaran organism , 2019, Science Advances.

[48]  R. Mann,et al.  The dynamics of stem and crown groups , 2019, Science Advances.

[49]  S. Xiao,et al.  Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion , 2019, Geology.

[50]  A. Liu,et al.  Integrated records of environmental change and evolution challenge the Cambrian Explosion , 2019, Nature Ecology & Evolution.

[51]  Michael B. Meyer,et al.  Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life , 2019, Nature Communications.

[52]  U. Schaltegger,et al.  New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion , 2018, Terra Nova.

[53]  A. Liu,et al.  The importance of neutral over niche processes in structuring Ediacaran early animal communities , 2018, bioRxiv.

[54]  A. Maloof,et al.  An early diagenetic deglacial origin for basal Ediacaran “cap dolostones” , 2018, Earth and Planetary Science Letters.

[55]  M. Droser,et al.  Ecological Expansion and Extinction in the Late Ediacaran: Weighing the Evidence for Environmental and Biotic Drivers. , 2018, Integrative and comparative biology.

[56]  Wolfgang Kiessling,et al.  The r package divDyn for quantifying diversity dynamics using fossil sampling data , 2018, Methods in Ecology and Evolution.

[57]  D. Erwin,et al.  Ediacaran Extinction and Cambrian Explosion. , 2018, Trends in ecology & evolution.

[58]  T. Lyons,et al.  Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. , 2018, Emerging topics in life sciences.

[59]  S. Jensen,et al.  Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion , 2018, Scientific Reports.

[60]  R. Garwood,et al.  Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil , 2017, Nature Ecology & Evolution.

[61]  M. Droser,et al.  The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran , 2017 .

[62]  D. Ksepka,et al.  Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction , 2017, Proceedings of the National Academy of Sciences.

[63]  N. Minter,et al.  Early bursts of diversification defined the faunal colonization of land , 2017, Nature Ecology & Evolution.

[64]  R. Wood,et al.  A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform , 2017 .

[65]  S. Jensen,et al.  The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution , 2017, Biological reviews of the Cambridge Philosophical Society.

[66]  Liam G. Herringshaw,et al.  Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers , 2017, Special Publications.

[67]  D. Grazhdankin,et al.  Towards an ediacaran time scale: Problems, protocols, and prospects , 2016 .

[68]  D. Schrag,et al.  The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA , 2016 .

[69]  F. Macdonald,et al.  Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota , 2016 .

[70]  J. Schiffbauer,et al.  The latest Ediacaran Wormworld fauna: Setting the ecological stage for the Cambrian Explosion , 2016 .

[71]  Maoyan Zhu,et al.  Transitional Ediacaran–Cambrian small skeletal fossil assemblages from South China and Kazakhstan: Implications for chronostratigraphy and metazoan evolution , 2016 .

[72]  P. Vickers-Rich,et al.  Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia , 2016 .

[73]  D. Erwin,et al.  A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia , 2016 .

[74]  M. Laflamme,et al.  Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils , 2016, Paleobiology.

[75]  D. Erwin,et al.  Rarity in mass extinctions and the future of ecosystems , 2015, Nature.

[76]  D. Jacobs,et al.  Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia , 2015, Evolution & development.

[77]  N. Planavsky,et al.  Protracted development of bioturbation through the early Palaeozoic Era , 2015 .

[78]  I. Rahman,et al.  Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems , 2015, Science Advances.

[79]  D. Erwin,et al.  Biotic replacement and mass extinction of the Ediacara biota , 2015, Proceedings of the Royal Society B: Biological Sciences.

[80]  A. Maloof,et al.  Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion , 2015 .

[81]  A. Liu,et al.  Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota , 2015 .

[82]  K. Hoffmann,et al.  Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia , 2015 .

[83]  M. Droser,et al.  The advent of animals: The view from the Ediacaran , 2015, Proceedings of the National Academy of Sciences.

[84]  T. Lenton,et al.  Ocean acidification and the Permo-Triassic mass extinction , 2015, Science.

[85]  A. Curtis,et al.  Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding , 2015, Geobiology.

[86]  D. McIlroy,et al.  Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma) , 2014, Proceedings of the Royal Society B: Biological Sciences.

[87]  P. Swart,et al.  Interpreting carbonate and organic carbon isotope covariance in the sedimentary record , 2014, Nature Communications.

[88]  J. Alroy Accurate and precise estimates of origination and extinction rates , 2014, Paleobiology.

[89]  M. G. Mángano,et al.  Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks , 2014, Proceedings of the Royal Society B: Biological Sciences.

[90]  D. Grazhdankin Patterns of Evolution of the Ediacaran Soft-Bodied Biota , 2014 .

[91]  D. Erwin Temporal acuity and the rate and dynamics of mass extinctions , 2014, Proceedings of the National Academy of Sciences.

[92]  S. Bowring,et al.  High-precision timeline for Earth’s most severe extinction , 2014, Proceedings of the National Academy of Sciences.

[93]  D. Schrag,et al.  The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada , 2013 .

[94]  D. Erwin,et al.  The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? , 2013 .

[95]  Andrea L. Cirranello,et al.  The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals , 2013, Science.

[96]  Maoyan Zhu,et al.  The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin , 2013 .

[97]  D. Jablonski,et al.  Long-term origination rates are reset only at mass extinctions , 2012 .

[98]  D. Erwin,et al.  Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa , 2012, Evolutionary Ecology.

[99]  G. Penha-Lopes,et al.  What is bioturbation? The need for a precise definition for fauna in aquatic sciences , 2012 .

[100]  D. Erwin,et al.  Calibrating the End-Permian Mass Extinction , 2011, Science.

[101]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[102]  J. S. Sinninghe Damsté,et al.  Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction , 2011, Science.

[103]  B. Wernicke,et al.  The Shuram and subsequent Ediacaran carbon isotope excursions from southwest Laurentia, and implications for environmental stability during the metazoan radiation , 2011 .

[104]  J. Grotzinger,et al.  Enigmatic origin of the largest-known carbon isotope excursion in Earth's history , 2011 .

[105]  A. Maloof,et al.  The earliest Cambrian record of animals and ocean geochemical change , 2010 .

[106]  S. Xiao,et al.  Osmotrophy in modular Ediacara organisms , 2009, Proceedings of the National Academy of Sciences.

[107]  M. Kennedy,et al.  The late Precambrian greening of the Earth , 2009, Nature.

[108]  P. Swart Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle , 2008, Proceedings of the National Academy of Sciences.

[109]  J. Alroy Dynamics of origination and extinction in the marine fossil record , 2008, Proceedings of the National Academy of Sciences.

[110]  D. Erwin Macroevolution of ecosystem engineering, niche construction and diversity. , 2008, Trends in ecology & evolution.

[111]  M. Droser,et al.  Synchronous Aggregate Growth in an Abundant New Ediacaran Tubular Organism , 2008, Science.

[112]  P. Allen,et al.  Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman , 2007, American Journal of Science.

[113]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[114]  C. Heip,et al.  Bioturbation: a fresh look at Darwin's last idea. , 2006, Trends in ecology & evolution.

[115]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[116]  D. Grazhdankin Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution , 2004, Paleobiology.

[117]  M. Clapham,et al.  Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland , 2003, Paleobiology.

[118]  J. Grotzinger,et al.  Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman , 2003 .

[119]  B. Waggoner The Ediacaran Biotas in Space and Time1 , 2003, Integrative and comparative biology.

[120]  D. Jablonski Survival without recovery after mass extinctions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  R. Rosenberg,et al.  Response of Benthic Fauna and Changing Sediment Redox Profiles over a Hypoxic Gradient , 2001 .

[122]  J. Hagadorn,et al.  EDIACARAN FOSSILS FROM THE SOUTHWESTERN GREAT BASIN, UNITED STATES , 2000, Journal of Paleontology.

[123]  S. Jensen,et al.  Complex trace fossils from the terminal Proterozoic of Namibia , 2000 .

[124]  B. Waggoner Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions , 1999, Paleobiology.

[125]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[126]  Michael Foote,et al.  Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids , 1999, Paleobiology.

[127]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .

[128]  S. Jensen,et al.  Ediacara-type fossils in Cambrian sediments , 1998, Nature.

[129]  C. Fanning,et al.  Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen , 1998 .

[130]  Thomas J. Algeo,et al.  Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events , 1998 .

[131]  A. Knoll,et al.  Comparative Earth History and Late Permian Mass Extinction , 1996, Science.

[132]  A. J. Kaufman,et al.  Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. , 1994, Geological Society of America bulletin.

[133]  M. Brasier,et al.  Decision on the Precambrian-Cambrian boundary stratotype , 1994 .

[134]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[135]  S. Bengtson,et al.  Predatorial Borings in Late Precambrian Mineralized Exoskeletons , 1992, Science.

[136]  M. Brasier Background to the Cambrian Explosion , 1992, Journal of the Geological Society.

[137]  A. Seilacher Vendobionta and Psammocorallia: lost constructions of Precambrian evolution , 1992, Journal of the Geological Society.

[138]  Malcolm R. Walter,et al.  Latest Proterozoic stratigraphy and Earth history , 1992, Nature.

[139]  J. Kirschvink,et al.  The Precambrian-Cambrian boundary: Magnetostratigraphy and Carbon Isotopes resolve correlation problems between Siberia, Morocco, and South China , 1991 .

[140]  A. Seilacher Vendozoa: Organismic construction in the Proterozoic biosphere , 1989 .

[141]  M. Labarbera :The Dawn of Animal Life: A Biohistorical Study , 1985 .

[142]  A. Seilacher Discussion of Precambrian metazoans , 1985 .

[143]  M. Glaessner The Dawn of Animal Life: A Biohistorical Study , 1985 .

[144]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[145]  G. Germs New shelly fossils from Nama Group, South West Africa , 1972 .

[146]  J. Schiffbauer,et al.  DIVERSITY IN THE AGE OF TUBES: A MORPHOMETRIC APPROACH TO UNDERSTANDING THE BREADTH OF EDIACARAN TUBE-DWELLING TAXA , 2022, Geological Society of America Abstracts with Programs.

[147]  Katie M. Maloney,et al.  The trace fossil record of the Nama Group, Namibia: Exploring the terminal Ediacaran roots of the Cambrian explosion , 2021 .

[148]  S. Xiao,et al.  Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes , 2019, Precambrian Research.

[149]  C. Holmden,et al.  Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments , 2018 .

[150]  A. Wooda,et al.  Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia , 2015 .

[151]  P. Lavery,et al.  Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms , 2013 .

[152]  D. Bottjer,et al.  8 - Ecosystem Engineering in the Fossil Record: Early Examples from the Cambrian Period , 2007 .

[153]  A. Seilacher Late Precambrian and Early Cambrian Metazoa: Preservational or Real Extinctions? , 1984 .

[154]  D. Rhoads,et al.  SEAFLOOR STABILITY IN CENTRAL LONG ISLAND SOUND: Part I. Temporal Changes In Erodibility of Fine-Grained Sediment , 1978 .

[155]  N. D. Newell Revolutions in the History of Life , 1967 .