Short and Simple Cycle Separators in Planar Graphs

We provide an implementation of an algorithm that, given a triangulated planar graph with m edges, returns a simple cycle that is a 3/4-balanced separator consisting of at most √8m edges. An efficient construction of a short and balanced separator that forms a simple cycle is essential in numerous planar graph algorithms, for example, for computing shortest paths, minimum cuts, or maximum flows. To the best of our knowledge, this is the first implementation of such a cycle separator algorithm with a worst-case guarantee on the cycle length. We evaluate the performance of our algorithm and compare it to the planar separator algorithms recently studied by Holzer et al. [2009]. Out of these algorithms, only the Fundamental Cycle Separator (FCS) produces a simple cycle separator. However, FCS does not provide a worst-case size guarantee. We demonstrate that (1) our algorithm is competitive across all test cases in terms of running time, balance, and cycle length; (2) it provides worst-case guarantees on the cycle length, significantly outperforming FCS on some instances; and (3) it scales to large graphs.

[1]  Karl Georg Christian von Staudt Geometrie der Lage , 1847 .

[2]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[3]  W. T. Tutte A THEOREM ON PLANAR GRAPHS , 1956 .

[4]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[5]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[6]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[7]  H. Djidjev On the Problem of Partitioning Planar Graphs , 1982 .

[8]  Gary L. Miller,et al.  Finding small simple cycle separators for 2-connected planar graphs. , 1984, STOC '84.

[9]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[10]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[11]  Gary L. Miller,et al.  Planar Separators and the Euclidean Norm , 1990, SIGAL International Symposium on Algorithms.

[12]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[13]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[14]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[15]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[16]  Shang-Hua Teng,et al.  Disk packings and planar separators , 1996, SCG '96.

[17]  Hristo Djidjev,et al.  Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus , 1996, SIAM J. Discret. Math..

[18]  Hristo Djidjev,et al.  Reduced constants for simple cycle graph separation , 1997, Acta Informatica.

[19]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[20]  Lamis Mahmoud Farrag Applications of graph partitioning algorithms to terrain visibility and shortest path problems , 1998 .

[21]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[22]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[23]  Jonathan A. Kelner Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus , 2004, STOC '04.

[24]  Jonathan A. Kelner Spectral Partitioning, Eigenvalue Bounds, and Circle Packings for Graphs of Bounded Genus , 2006, SIAM J. Comput..

[25]  Hristo Djidjev,et al.  Partitioning planar graphs with costs and weights , 2002, ALENEX.

[26]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[27]  Andrew V. Goldberg,et al.  Implementation Challenge for Shortest Paths , 2008, Encyclopedia of Algorithms.

[28]  James R. Lee,et al.  Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Bruce A. Reed,et al.  A linear-time algorithm to find a separator in a graph excluding a minor , 2009, TALG.

[30]  Christian Wulff-Nilsen,et al.  Shortest Paths in Planar Graphs with Real Lengths in O(nlog2n/loglogn) Time , 2009, ESA.

[31]  Bruce A. Reed,et al.  A Separator Theorem in Minor-Closed Classes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[32]  Christos D. Zaroliagis,et al.  Engineering planar separator algorithms , 2005, JEAL.

[33]  Piotr Sankowski,et al.  Min-Cuts and Shortest Cycles in Planar Graphs in O(n loglogn) Time , 2011, ESA.

[34]  Christian Wulff-Nilsen,et al.  Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[35]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[36]  Glencora Borradaile,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[37]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[38]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[39]  Christian Sommer,et al.  Short and Simple Cycle Separators in Planar Graphs , 2013, ALENEX.

[40]  Norbert Zeh,et al.  Multiway Simple Cycle Separators and I/O-Efficient Algorithms for Planar Graphs , 2013, SODA.

[41]  Philip N. Klein,et al.  Structured recursive separator decompositions for planar graphs in linear time , 2012, STOC '13.