Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator.

I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously monitored forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level systems. Within this formalism the connection between irreversibility and entropy production is analyzed and confirmed by proving a detailed fluctuation theorem for quantum trajectories. Finally, possible experimental verifications are discussed.

[1]  Y. Subaşı,et al.  Quantum and classical fluctuation theorems from a decoherent histories, open-system analysis. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[3]  A. Carvalho,et al.  Observing different quantum trajectories in cavity QED , 2011, 1102.1047.

[4]  Peter Hänggi,et al.  Influence of measurements on the statistics of work performed on a quantum system. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[6]  Clément Pellegrini,et al.  Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems , 2010 .

[7]  Peter Hänggi,et al.  Fluctuation theorems for continuously monitored quantum fluxes. , 2010, Physical review letters.

[8]  G. Mahler,et al.  Limitations of the quantum Jarzynski estimator: boundary switching processes , 2010 .

[9]  Stéphane Attal,et al.  Stochastic Master Equations in Thermal Environment , 2010, Open Syst. Inf. Dyn..

[10]  Peter Hänggi,et al.  Quantum Bochkov–Kuzovlev work fluctuation theorems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  L. Davidovich,et al.  Engineering atomic quantum reservoirs for photons , 2010, 1001.3281.

[12]  O. Abah,et al.  Quantum work statistics of linear and nonlinear parametric oscillators , 2010, 1001.3055.

[13]  Massimiliano Esposito,et al.  Three detailed fluctuation theorems. , 2009, Physical review letters.

[14]  Suriyanarayanan Vaikuntanathan,et al.  Dissipation and lag in irreversible processes , 2009, 0909.3457.

[15]  F. Ritort Fluctuations in open systems , 2009 .

[16]  Peter Hänggi,et al.  Fluctuation theorem for arbitrary open quantum systems. , 2009, Physical review letters.

[17]  E. Lutz,et al.  Quantum fluctuation theorems in the strong damping limit , 2009, 0902.1858.

[18]  M. Esposito,et al.  Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems , 2008, 0811.3717.

[19]  P. Hänggi,et al.  Fluctuation theorems in driven open quantum systems , 2008, 0811.0973.

[20]  Sebastian Deffner,et al.  Employing trapped cold ions to verify the quantum Jarzynski equality. , 2008, Physical review letters.

[21]  C. Jarzynskia Nonequilibrium work relations: foundations and applications , 2008 .

[22]  J. Parrondo,et al.  The “footprints” of irreversibility , 2008, 0805.4703.

[23]  P. S. Burada,et al.  Statistics of work performed on a forced quantum oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Sekimoto Microscopic heat from the energetics of stochastic phenomena. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Sebastian Deffner,et al.  Nonequilibrium work distribution of a quantum harmonic oscillator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  U. Seifert Stochastic thermodynamics: principles and perspectives , 2007, 0710.1187.

[27]  Stephen R. Williams,et al.  Fluctuation theorems. , 2007, Annual review of physical chemistry.

[28]  G. Mahler,et al.  Model studies on the quantum Jarzynski relation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. Hänggi,et al.  Microcanonical quantum fluctuation theorems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  M. Esposito,et al.  Entropy fluctuation theorems in driven open systems: application to electron counting statistics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Gavin E. Crooks,et al.  Quantum Operation Time Reversal , 2007, 0706.3749.

[32]  G. Crooks On the Jarzynski relation for dissipative quantum dynamics , 2007, 0706.1994.

[33]  P. Hänggi,et al.  The Tasaki–Crooks quantum fluctuation theorem , 2007, 0705.1252.

[34]  T. Speck,et al.  Distribution of entropy production for a colloidal particle in a nonequilibrium steady state , 2007, 0705.0324.

[35]  R. Astumian Symmetry relations for trajectories of a Brownian motor. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  P. Hänggi,et al.  Fluctuation theorems: work is not an observable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  R. J. Harris,et al.  Fluctuation theorems for stochastic dynamics , 2007, cond-mat/0702553.

[38]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[39]  A. Engel,et al.  Jarzynski equation for a simple quantum system: Comparing two definitions of work , 2006, cond-mat/0612527.

[40]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[41]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[42]  T. Speck,et al.  Measurement of stochastic entropy production. , 2006, Physical review letters.

[43]  M. Blencowe,et al.  Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. , 2006, Physical review letters.

[44]  U. Seifert,et al.  Stochastic thermodynamics of chemical reaction networks. , 2006, The Journal of chemical physics.

[45]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[46]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  M. Esposito,et al.  Fluctuation theorems for quantum master equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  T. Speck,et al.  Entropy Production for Mechanically or Chemically Driven Biomolecules , 2006, cond-mat/0601636.

[49]  T. Speck,et al.  Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. , 2005, Physical review letters.

[50]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[51]  U. Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[52]  S. Attal,et al.  Weak Coupling and Continuous Limits for Repeated Quantum Interactions , 2005, math-ph/0501012.

[53]  T. Monnai Unified treatment of the quantum fluctuation theorem and the Jarzynski equality in terms of microscopic reversibility. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  T. Kieu The second law, Maxwell's demon, and work derivable from quantum heat engines. , 2004, Physical review letters.

[55]  C. Maes,et al.  STEADY STATE FLUCTUATIONS OF THE DISSIPATED HEAT FOR A QUANTUM STOCHASTIC MODEL , 2004, cond-mat/0406004.

[56]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[57]  C. Maes,et al.  Quantum version of free-energy--irreversible-work relations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  H. Breuer Quantum jumps and entropy production , 2003, quant-ph/0306047.

[59]  S. Mukamel Quantum extension of the Jarzynski relation: analogy with stochastic dephasing. , 2003, Physical review letters.

[60]  G. Ghirardi,et al.  Dynamical reduction models , 2003, quant-ph/0302164.

[61]  C. Maes,et al.  Quantum entropy production as a measure of irreversibility , 2002, cond-mat/0211252.

[62]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[63]  D. Spehner,et al.  Quantum jump dynamics in cavity QED , 2002 .

[64]  C. Maes,et al.  Time-Reversal and Entropy , 2002, cond-mat/0202501.

[65]  T. Brun A simple model of quantum trajectories , 2001, quant-ph/0108132.

[66]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[67]  T. Hatano,et al.  Steady-state thermodynamics of Langevin systems. , 2000, Physical review letters.

[68]  H. Tasaki Jarzynski Relations for Quantum Systems and Some Applications , 2000, cond-mat/0009244.

[69]  Nathan,et al.  Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach , 2000, cond-mat/0006333.

[70]  C. Maes,et al.  On the definition of entropy production, via examples , 2000 .

[71]  G. Crooks Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.

[72]  G. Gabrielse,et al.  Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States , 1999 .

[73]  Todd A. Brun,et al.  Stochastic Schrdinger equations in cavity QED: physical interpretation and localization , 1999 .

[74]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[76]  K. Jacobs Topics in Quantum Measurement and Quantum Noise , 1998, quant-ph/9810015.

[77]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[78]  T. Brun Continuous measurements, quantum trajectories, and decoherent histories , 1997, quant-ph/9710021.

[79]  C. cohen-tannoudji,et al.  Photons and Atoms , 1997 .

[80]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[81]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[82]  H. Wiseman Quantum trajectories and quantum measurement theory , 1996, quant-ph/0302080.

[83]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[84]  Ueda,et al.  Continuous quantum-nondemolition measurement of photon number. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[85]  Klarsfeld,et al.  Magnus approximation in the adiabatic picture. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[86]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[87]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[88]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[89]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[90]  Y. Kuzovlev,et al.  Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics , 1981 .

[91]  John C. Light,et al.  On the Exponential Form of Time‐Displacement Operators in Quantum Mechanics , 1966 .

[92]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[93]  P. Hänggi,et al.  FAST TRACK COMMUNICATION: Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case , 2009 .

[94]  Ken Sekimoto,et al.  Langevin Equation and Thermodynamics , 1998 .

[95]  Howard Mark Wiseman,et al.  Quantum trajectories and feedback , 1994 .

[96]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .