Microwave imaging for ultra-wideband antenna based cancer detection

[1]  H. J. Li,et al.  APPLICATION OF WAVELET TRANSFORM IN TARGET IDENTIFICATION , 2001 .

[2]  Andrew J. Poggio,et al.  Evaluation of a Processing Technique for Transient Data , 1978, IEEE Transactions on Electromagnetic Compatibility.

[3]  A. Taflove,et al.  Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors , 1998, IEEE Transactions on Biomedical Engineering.

[4]  P. Forrester,et al.  Understanding cancer of the breast , 2014 .

[5]  A. Preece,et al.  Experimental and clinical results of breast cancer detection using UWB microwave radar , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[6]  Elise C. Fear,et al.  Microwave detection of breast cancer , 2000 .

[7]  Elena Pancera,et al.  Medical applications of the Ultra Wideband technology , 2010, 2010 Loughborough Antennas & Propagation Conference.

[8]  Quan-Yong Luo,et al.  Uncommon metastases from differentiated thyroid carcinoma. , 2012, Hellenic journal of nuclear medicine.

[9]  W. Marsden I and J , 2012 .

[10]  Geoffrey M. Cooper,et al.  Elements of Human Cancer , 1992 .

[11]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[12]  Ian J Craddock,et al.  Breast cancer detection using symmetrical antenna array , 2007 .

[13]  J. Elmore,et al.  Ten-year risk of false positive screening mammograms and clinical breast examinations. , 1998, The New England journal of medicine.

[14]  Sun Hong Resonance-Based Techniques for Microwave Breast Cancer Applications , 2012 .

[15]  B. Shuppert,et al.  Microstrip/slotline transitions: modeling and experimental investigation , 1988 .

[16]  R. Benjamin,et al.  A Comparison of a Wide-Slot and a Stacked Patch Antenna for the Purpose of Breast Cancer Detection , 2010, IEEE Transactions on Antennas and Propagation.

[17]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[18]  Taylor Murray,et al.  Cancer statistics, 2000 , 2000, CA: a cancer journal for clinicians.

[19]  Carl E. Baum,et al.  On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems , 1971 .

[20]  J. Edrich,et al.  Microwaves in breast cancer detection. , 1987, European journal of radiology.

[21]  M. Math,et al.  Noninvasive Diagnosis of Deep Venous Thrombosis , 1998, Annals of Internal Medicine.

[22]  Yong-jun Xie,et al.  Design of Resistive Loading Vivaldi Antenna , 2009, IEEE Antennas and Wireless Propagation Letters.

[23]  Quing Zhu,et al.  Modeling of noninvasive microwave characterization of breast tumors , 2004, IEEE Transactions on Biomedical Engineering.

[24]  J. T. Aberle,et al.  Characterization of Vivaldi antennas utilizing a microstrip-to-slotline transition , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[25]  Kamal Sarabandi,et al.  Antennas and Propagation , 2019, 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[26]  K. Paulsen,et al.  Initial clinical experience with microwave breast imaging in women with normal mammography. , 2007, Academic radiology.

[27]  D. Kopans,et al.  Mammography , 1993, The Lancet.

[28]  Jeremie Bourqui,et al.  Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging , 2010, IEEE Transactions on Antennas and Propagation.

[29]  Sun K. Hong,et al.  Practical Implications of Pole Series Convergence and the Early-time in Transient Backscatter , 2012 .

[30]  Ian J Craddock,et al.  Numerical investigation of breast tumour detection using multi-static radar , 2003 .

[31]  Geoffrey S Hilton,et al.  Microwave detection of buried mines using non-contact, synthetic near-field focusing , 2001 .

[32]  Jian Li,et al.  Multistatic Adaptive Microwave Imaging for Early Breast Cancer Detection , 2006, IEEE Transactions on Biomedical Engineering.

[33]  X. Li,et al.  Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[34]  R. Benjamin,et al.  Development and application of a UWB radar system for breast imaging , 2008, 2008 Loughborough Antennas and Propagation Conference.

[35]  S. S. Chaudhary,et al.  Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. , 1984, Indian journal of biochemistry & biophysics.

[36]  Yifan Chen,et al.  Effect of Lesion Morphology on Microwave Signature in 2-D Ultra-Wideband Breast Imaging , 2008, IEEE Transactions on Biomedical Engineering.

[37]  D. Schaubert,et al.  Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays , 2000 .

[38]  M. Lindstrom,et al.  A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries , 2007, Physics in medicine and biology.

[39]  M. Stuchly,et al.  Experimental feasibility study of confocal microwave imaging for breast tumor detection , 2003 .

[40]  F. Thiel,et al.  Contrast agent based tumour detection by ultra-wideband radar: A model approach , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[41]  E. Madsen,et al.  Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications , 2005, Physics in medicine and biology.

[42]  W. Willett,et al.  Breast cancer (1) , 1992, The New England journal of medicine.

[43]  R Sainsbury The Breast: Comprehensive Management of Benign and Malignant Disorders , 2004, British Journal of Cancer.

[44]  J Jossinet,et al.  A Review of Parameters for the Bioelectrical Characterization of Breast Tissue , 1999, Annals of the New York Academy of Sciences.

[45]  P. Kosmas,et al.  A matched-filter FDTD-based time reversal approach for microwave breast cancer detection , 2006, IEEE Transactions on Antennas and Propagation.

[46]  Paul M. Meaney,et al.  A clinical prototype for active microwave imaging of the breast , 2000 .

[47]  David Girbau,et al.  Wavelet-Based Breast Tumor Localization Technique Using a UWB Radar , 2009 .

[48]  C. J. Kotre,et al.  X-ray mammography and breast compression , 1992, The Lancet.

[49]  T. Manku,et al.  Design and analysis of new Fermi-like tapered slot antennas , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[50]  Raj Mittra,et al.  A technique for extracting the poles and residues of a system directly from its transient response , 1975 .

[51]  D. Land,et al.  Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz. , 1992, Physics in medicine and biology.

[52]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[53]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[54]  Xu Li,et al.  Microwave imaging via space-time beamforming for early detection of breast cancer , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[55]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[56]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[57]  P. J. Gibson The Vivaldi Aerial , 1979, 1979 9th European Microwave Conference.

[58]  A. Taflove,et al.  FDTD modeling of a coherent-addition antenna array for early-stage detection of breast cancer , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[59]  Braham Himed,et al.  Application of the matrix pencil approach to direction finding , 1990 .

[60]  Yifan Chen,et al.  Time of Arrival Data Fusion Method for Two-Dimensional Ultrawideband Breast Cancer Detection , 2007, IEEE Transactions on Antennas and Propagation.

[61]  M. A. Morgan,et al.  Singularity expansion representations of fields and currents in transient scattering , 1984 .

[62]  Ij Craddock,et al.  Breast tumour detection using a flat 16 element array , 2005 .

[63]  A. Mihas,et al.  Small intestinal neoplasms. , 2001, Journal of clinical gastroenterology.

[64]  Vitaliy Zhurbenko,et al.  Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection , 2011 .

[65]  Robert H. Svenson,et al.  Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography , 2000 .

[66]  Creeping waves and resonances in transient scattering by smooth convex objects , 1983 .

[67]  David Page,et al.  Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms , 2013, AMIA.

[68]  E.C. Fear,et al.  Tissue Sensing Adaptive Radar for Breast Cancer Detection—Experimental Investigation of Simple Tumor Models , 2005, IEEE Transactions on Microwave Theory and Techniques.

[69]  R. Fimmers,et al.  Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[70]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[71]  Rangaraj M. Rangayyan,et al.  Measures of acutance and shape for classification of breast tumors , 1997, IEEE Transactions on Medical Imaging.

[72]  P. Kosmas,et al.  Time reversal with the FDTD method for microwave breast cancer detection , 2005, IEEE Transactions on Microwave Theory and Techniques.

[73]  Lorenzo Leija,et al.  Measurement of breast - tumor phantom dielectric properties for microwave breast cancer treatment evaluation , 2010, 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control.

[74]  Barry D. Van Veen,et al.  Breast Tumor Characterization Based on Ultrawideband Microwave Backscatter , 2008, IEEE Transactions on Biomedical Engineering.

[75]  David Girbau,et al.  Simulated and Experimental Investigation of Microwave Imaging Using UWB , 2009 .

[76]  W. Joines,et al.  The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. , 1994, Medical physics.

[77]  A. Preece,et al.  Radar-Based Breast Cancer Detection Using a Hemispherical Antenna Array—Experimental Results , 2009, IEEE Transactions on Antennas and Propagation.

[78]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[79]  Amir Asif,et al.  Breast cancer detection using time reversal signal processing , 2009, 2009 IEEE 13th International Multitopic Conference.

[80]  Bin Guo,et al.  Multi-Static Adaptive Microwave Imaging for Early Breast Cancer Detection , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..