A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision

We defined cortical areas involved in the analysis of motion in the far peripheral visual field, a poorly understood aspect of visual processing in primates. This was accomplished by small tracer injections within and around the representations of the monocular field of vision (‘temporal crescents’) in the middle temporal area (MT) of marmoset monkeys. Quantitative analyses demonstrate that the representation of the far periphery receives specific connections from the retrosplenial cortex (areas 23v and prostriata), as well as comparatively stronger inputs from the primary visual area (V1) and from areas surrounding MT (in particular, the medial superior temporal area, MST). In contrast, the far peripheral representation receives little or no input from most other extrastriate areas, including the second visual area (V2), the densely myelinated areas of the dorsomedial cortex, and ventral stream areas; these areas are shown to have robust projections to other parts of MT. Our results demonstrate that the responses of cells in different parts of a same visual area can be determined by different combinations of synaptic inputs, in terms of areas of origin. They also suggest that the interconnections responsible for motion processing in the far periphery of the visual field convey information that is crucial for rapid‐response aspects of visual function such as orienting, postural and defensive reactions.

[1]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[2]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[3]  P. Maclean,et al.  Unit analysis of visual input to posterior limbic cortex. II. Intracerebral stimuli. , 1965, Journal of neurophysiology.

[4]  P. Maclean,et al.  Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation. , 1965, Journal of neurophysiology.

[5]  J. Kaas,et al.  A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). , 1972, Brain research.

[6]  D. Whitteridge,et al.  The visual areas in the splenial sulcus of the cat , 1973, The Journal of physiology.

[7]  V. Montero,et al.  Retinotopic organization of striate and peristriate visual cortex in the albino rat. , 1973, Brain research.

[8]  David N. Lee Visual proprioceptive control of stance , 1975 .

[9]  Willard A. Burns,et al.  Report of a Case and Review of the Literature , 2017 .

[10]  S. Sherman,et al.  Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. , 1976, Journal of neurophysiology.

[11]  G. Johansson Studies on Visual Perception of Locomotion , 1977, Perception.

[12]  R. Gattass,et al.  Visuotopic organization of the Cebus pulvinar: A double representation of the contralateral hemifield , 1978, Brain Research.

[13]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[14]  A. Berthoz,et al.  Visual contribution to rapid motor responses during postural control , 1978, Brain Research.

[15]  Leslie G. Ungerleider,et al.  The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization , 1979, The Journal of comparative neurology.

[16]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[17]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[18]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[19]  S Zeki,et al.  A direct projection from area V1 to area V3A of rhesus monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  M. Swash,et al.  Vision in the temporal crescent in occipital infarction. , 1980, Brain : a journal of neurology.

[21]  Dr. Heinz Stephan,et al.  The Brain of the Common Marmoset (Callithrix jacchus) , 1980, Springer Berlin Heidelberg.

[22]  L. Teodori,et al.  Report of a Case and Review of the Literature , 1981 .

[23]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[24]  G. Orban,et al.  The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat , 1981, Brain Research.

[25]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[26]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  G. W. Hoesen,et al.  Retinal projections to the inferior and medial pulvinar nuclei in the old-world monkey , 1983, Brain Research.

[28]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[29]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[30]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[31]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[32]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[33]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[35]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[36]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[37]  K. Heilman,et al.  Retrosplenial cortex: possible role in habituation of the orienting response , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[39]  L. Schmued A rapid, sensitive histochemical stain for myelin in frozen brain sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[40]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[41]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[44]  Alan Cowey,et al.  Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation , 1992, Neuropsychologia.

[45]  P Fattori,et al.  Functional properties of neurons in area V1 of awake macaque monkeys: peripheral versus central visual field representation. , 1993, Archives italiennes de biologie.

[46]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[47]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[48]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A retrograde fluorescent-labeling study of direct relationship between the limbic (anterodorsal and anteroventral thalamic nuclei) and the visual system in the albino rat , 1996, Brain Research.

[50]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[51]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[52]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[53]  Temporal Crescent Syndrome with Magnetic Resonance Correlation , 1997, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[54]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[55]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[56]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[57]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[58]  C. Galletti,et al.  Brain location and visual topography of cortical area V6A in the macaque monkey , 1999, The European journal of neuroscience.

[59]  M Petrides,et al.  Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). , 1999, The European journal of neuroscience.

[60]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[61]  P. Bessou,et al.  Specificity of the monocular crescents of the visual field in postural control. , 1999, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[62]  M. Rosa Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex , 1999, The Journal of comparative neurology.

[63]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[64]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[65]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[66]  Ricardo Gattass,et al.  Third tier ventral extrastriate cortex in the New World monkey, Cebus apella , 2000, Experimental Brain Research.

[67]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[68]  C. Casanova,et al.  Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. , 2001, Cerebral cortex.

[69]  M G Rosa,et al.  The dorsomedial visual areas in New World and Old World monkeys: homology and function , 2001, The European journal of neuroscience.

[70]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[71]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[72]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[73]  J. Kaas,et al.  Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of new world monkeys , 2002, The Journal of comparative neurology.

[74]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[75]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[76]  H. Rodman,et al.  Pattern of retinal projections in the California ground squirrel (Spermophilus beecheyi): Anterograde tracing study using cholera toxin , 2003, The Journal of comparative neurology.

[77]  Song-Lin Ding,et al.  Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey , 2003, The Journal of comparative neurology.

[78]  Marcello G P Rosa,et al.  Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). , 2003, Brain research. Brain research protocols.

[79]  [Temporal crescent syndrome. Report of a case and review of the literature]. , 2004, Revista medica de Chile.

[80]  J. Dichgans,et al.  Differential effects of central versus peripheral vision on egocentric and exocentric motion perception , 1973, Experimental Brain Research.

[81]  M. Rosa,et al.  Maps of the visual field in the cerebral cortex of primates: Functional organisation and significance , 2004 .

[82]  W. B. Spatz Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus , 1977, Experimental Brain Research.

[83]  W. E. Stumpf,et al.  Direct visual input to the limbic system: Crossed retinal projections to the nucleus anterodorsalis thalami in the tree shrew , 1975, Experimental Brain Research.

[84]  A. Berthoz,et al.  Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions , 1975, Experimental Brain Research.

[85]  B. Isableu,et al.  The visual control of stability in children and adults: postural readjustments in a ground optical flow , 2004, Experimental Brain Research.

[86]  O. Creutzfeldt,et al.  Topographical and topological organization of the thalamocortical projection to the striate and prestriate cortex in the marmoset (Callithrix jacchus) , 2004, Experimental Brain Research.

[87]  H. Barbas,et al.  Developmental mechanics of the primate cerebral cortex , 2005, Anatomy and Embryology.

[88]  Claus C Hilgetag,et al.  Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex , 2005, The European journal of neuroscience.

[89]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  P. Barone,et al.  Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey , 2005, The European journal of neuroscience.

[91]  C. Galletti,et al.  The relationship between V6 and PO in macaque extrastriate cortex , 2005, The European journal of neuroscience.

[92]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[93]  Iwona Stepniewska,et al.  Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. , 2005, Cerebral cortex.

[94]  M. Rosa,et al.  CLARIFYING HOMOLOGIES IN THE MAMMALIAN CEREBRAL CORTEX: THE CASE OF THE THIRD VISUAL AREA (V3) , 2005, Clinical and experimental pharmacology & physiology.

[95]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[96]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[97]  Marcello G P Rosa,et al.  Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. , 2006, Cerebral cortex.

[98]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.