Computational modeling of mammalian signaling networks

One of the most exciting developments in signal transduction research has been the proliferation of studies in which a biological discovery was initiated by computational modeling. In this study, we review the major efforts that enable such studies. First, we describe the experimental technologies that are generally used to identify the molecular components and interactions in, and dynamic behavior exhibited by, a network of interest. Next, we review the mathematical approaches that are used to model signaling network behavior. Finally, we focus on three specific instances of ‘model‐driven discovery’: cases in which computational modeling of a signaling network has led to new insights that have been verified experimentally. Copyright © 2009 John Wiley & Sons, Inc.

[1]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[2]  A. Levchenko,et al.  Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. , 2001, Biophysical journal.

[3]  Michael Kühl,et al.  Extended analyses of the Wnt/β‐catenin pathway: Robustness and oscillatory behaviour , 2007, FEBS letters.

[4]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[5]  Scott E. Fraser,et al.  Imaging in Systems Biology , 2007, Cell.

[6]  Xin Bian,et al.  Constitutively Active NFκB Is Required for the Survival of S-type Neuroblastoma* , 2002, The Journal of Biological Chemistry.

[7]  T. Zor,et al.  Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. , 1996, Analytical biochemistry.

[8]  Paul A. Bates,et al.  Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system , 2008, Proceedings of the National Academy of Sciences.

[9]  John G. Albeck,et al.  Cue-Signal-Response Analysis of TNF-Induced Apoptosis by Partial Least Squares Regression of Dynamic Multivariate Data , 2004, J. Comput. Biol..

[10]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[11]  Claire J. Tomlin,et al.  Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model , 2001, HSCC.

[12]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[13]  A. Strasser,et al.  Apoptosis signaling. , 2000, Annual review of biochemistry.

[14]  D. Lauffenburger,et al.  A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.

[15]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[16]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[17]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[18]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[19]  Jayajit Das,et al.  Digital Signaling and Hysteresis Characterize Ras Activation in Lymphoid Cells , 2009, Cell.

[20]  S. Kingsmore Multiplexed protein measurement: technologies and applications of protein and antibody arrays , 2006, Nature Reviews Drug Discovery.

[21]  Garry P. Nolan,et al.  Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry , 2002, Nature Biotechnology.

[22]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[23]  Andrew D McCulloch,et al.  Modeling beta-adrenergic control of cardiac myocyte contractility in silico. , 2003, The Journal of biological chemistry.

[24]  John G. Albeck,et al.  Collecting and organizing systematic sets of protein data , 2006, Nature Reviews Molecular Cell Biology.

[25]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[26]  Lili X. Peng,et al.  A High-throughput Quantitative Multiplex Kinase Assay for Monitoring Information Flow in Signaling Networks , 2003, Molecular & Cellular Proteomics.

[27]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[28]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[29]  Stephen R Quake,et al.  An in vitro microfluidic approach to generating protein-interaction networks , 2009, Nature Methods.

[30]  S. Quake,et al.  Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis , 2008, Nature Biotechnology.

[31]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Douglas A. Lauffenburger,et al.  Common effector processing mediates cell-specific responses to stimuli , 2007, Nature.

[33]  D. Schaffer,et al.  The sonic hedgehog signaling system as a bistable genetic switch. , 2004, Biophysical journal.

[34]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[35]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Steve A. Kay,et al.  Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression , 2004, Current Biology.

[37]  Cornelis J. Weijer,et al.  Visualizing Signals Moving in Cells , 2003, Science.

[38]  Ravi Iyengar,et al.  Cell Shape and Negative Links in Regulatory Motifs Together Control Spatial Information Flow in Signaling Networks , 2008, Cell.

[39]  G. Courtois,et al.  Mutations in the NF-kappaB signaling pathway: implications for human disease. , 2006, Oncogene.

[40]  S. Quake,et al.  A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors , 2007, Science.

[41]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[42]  Jonathan M Irish,et al.  Single Cell Profiling of Potentiated Phospho-Protein Networks in Cancer Cells , 2004, Cell.

[43]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[44]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[45]  Satoru Shiono,et al.  Control mechanism of JAK/STAT signal transduction pathway , 2003, FEBS letters.

[46]  G. Courtois,et al.  Mutations in the NF-κB signaling pathway: implications for human disease , 2006, Oncogene.

[47]  Peter W. Zandstra,et al.  Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control , 2007, PLoS Comput. Biol..

[48]  L. Hellman,et al.  Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions , 2007, Nature Protocols.

[49]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[50]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[51]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[52]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[53]  Zhilin Qu,et al.  Regulation of the mammalian cell cycle: a model of the G1-to-S transition. , 2003, American journal of physiology. Cell physiology.

[54]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[55]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[56]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[57]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[58]  Bernhard O. Palsson,et al.  Identification of Potential Pathway Mediation Targets in Toll-like Receptor Signaling , 2009, PLoS Comput. Biol..

[59]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Francis J. Doyle,et al.  Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network , 2007, Cell.

[61]  H. Wiley,et al.  An integrated model of epidermal growth factor receptor trafficking and signal transduction. , 2003, Biophysical journal.

[62]  B. Kholodenko,et al.  Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor* , 1999, The Journal of Biological Chemistry.

[63]  S. Fields,et al.  The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Timmer,et al.  Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Liming Yang,et al.  A loss-of-function RNA interference screen for molecular targets in cancer , 2006, Nature.

[66]  L. Loew,et al.  Systems Analysis of Ran Transport , 2002, Science.

[67]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[68]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[69]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[70]  D. Wallach,et al.  Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. , 1998, Current Opinion in Immunology.

[71]  D. Lauffenburger,et al.  The Response of Human Epithelial Cells to TNF Involves an Inducible Autocrine Cascade , 2006, Cell.

[72]  David Baltimore,et al.  Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. , 2008, Genes & development.

[73]  Jodi R Parrish,et al.  Yeast two-hybrid contributions to interactome mapping. , 2006, Current opinion in biotechnology.

[74]  L. Loew,et al.  The Virtual Cell: a software environment for computational cell biology. , 2001, Trends in biotechnology.

[75]  David Baltimore,et al.  CARD11 mediates factor‐specific activation of NF‐κB by the T cell receptor complex , 2002, The EMBO journal.

[76]  John J Tyson,et al.  A model for restriction point control of the mammalian cell cycle. , 2004, Journal of theoretical biology.

[77]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[78]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[79]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[80]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[81]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[82]  D. Kim,et al.  A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways , 2007, Oncogene.

[83]  C. Tomlin,et al.  Mathematical Modeling of Planar Cell Polarity to Understand Domineering Nonautonomy , 2005, Science.

[84]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[85]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[87]  J. Nolan,et al.  Multiplexed and microparticle‐based analyses: Quantitative tools for the large‐scale analysis of biological systems , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[88]  H. Kitano,et al.  A comprehensive pathway map of epidermal growth factor receptor signaling , 2005, Molecular systems biology.

[89]  L. Loew,et al.  Quantitative cell biology with the Virtual Cell. , 2003, Trends in cell biology.

[90]  B. Palsson,et al.  Reconstructing metabolic flux vectors from extreme pathways: defining the α-spectrum , 2003 .

[91]  Trey Ideker,et al.  Building with a scaffold: emerging strategies for high- to low-level cellular modeling. , 2003, Trends in biotechnology.

[92]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Brown,et al.  Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions , 2001, Genome Biology.

[94]  D. Baltimore,et al.  Achieving Stability of Lipopolysaccharide-Induced NF-κB Activation , 2005, Science.

[95]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[96]  J. Lieb,et al.  ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. , 2004, Genomics.

[97]  Eleni Bazigou,et al.  Cell signaling and cancer , 2007, Genome Biology.

[98]  Daniel B. Forger,et al.  Stochastic simulation of the mammalian circadian clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[101]  Hana Kim,et al.  A Fourth IκB Protein within the NF-κB Signaling Module , 2007, Cell.

[102]  Hannah H. Chang,et al.  Transcriptome-wide noise controls lineage choice in mammalian progenitor cells , 2008, Nature.

[103]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[104]  Marek Kimmel,et al.  Mathematical model of NF-kappaB regulatory module. , 2004, Journal of theoretical biology.

[105]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[106]  Steve Horvath,et al.  Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling , 2007, European Journal of Human Genetics.

[107]  Krishanu Saha,et al.  Signal dynamics in Sonic hedgehog tissue patterning , 2006, Development.

[108]  U Alon,et al.  Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[110]  Forest M White,et al.  Phosphoproteomic approaches to elucidate cellular signaling networks. , 2006, Current opinion in biotechnology.

[111]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[112]  Andrea Ciliberto,et al.  Steady States and Oscillations in the p53/Mdm2 Network , 2005, Cell cycle.

[113]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[114]  P. Maini,et al.  Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. , 1996, Journal of theoretical biology.

[115]  G. Nolan,et al.  Mapping normal and cancer cell signalling networks: towards single-cell proteomics , 2006, Nature Reviews Cancer.

[116]  Ravi Iyengar,et al.  Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks , 2008, Proceedings of the National Academy of Sciences.

[117]  Hana Kim,et al.  A fourth IkappaB protein within the NF-kappaB signaling module. , 2007, Cell.

[118]  D. Whelan,et al.  THE PROMISE ( AND PERIL ) , 2017 .

[119]  Ravi Iyengar,et al.  Models of Spatially Restricted Biochemical Reaction Systems* , 2009, Journal of Biological Chemistry.

[120]  Robert H. Singer,et al.  Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells , 2003, Current Biology.

[121]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[122]  H. Meinhardt Orientation of chemotactic cells and growth cones: models and mechanisms. , 1999, Journal of cell science.

[123]  Forest M White,et al.  Quantitative phosphoproteomics by mass spectrometry: Past, present, and future , 2008, Proteomics.

[124]  A. Levine,et al.  The p53 pathway: positive and negative feedback loops , 2005, Oncogene.

[125]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[126]  G. Lahav,et al.  Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. , 2008, Molecular cell.

[127]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[128]  Michael Karin,et al.  NF-kappaB: linking inflammation and immunity to cancer development and progression. , 2005, Nature reviews. Immunology.

[129]  J. Timmer,et al.  Supporting Online Material Material and Methods , 2022 .

[130]  Chang‐Deng Hu,et al.  Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. , 2002, Molecular cell.

[131]  Yoav Soen,et al.  Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments , 2006, Molecular systems biology.

[132]  Bruce Tidor,et al.  Distinct mechanisms act in concert to mediate cell cycle arrest , 2009, Proceedings of the National Academy of Sciences.

[133]  Daniel B. Forger,et al.  A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Nigam H. Shah,et al.  Current progress in network research: toward reference networks for key model organisms , 2007, Briefings Bioinform..

[135]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[136]  Gavin MacBeath,et al.  Protein microarrays and proteomics , 2002, Nature Genetics.

[137]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[138]  B. Palsson,et al.  Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum. , 2003, Journal of theoretical biology.

[139]  Reinhart Heinrich,et al.  The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway , 2003, PLoS biology.

[140]  D. Lauffenburger,et al.  A Compendium of Signals and Responses Triggered by Prodeath and Prosurvival Cytokines*S , 2005, Molecular & Cellular Proteomics.

[141]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[142]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[143]  Elvira García Osuna,et al.  Large-Scale Automated Analysis of Location Patterns in Randomly Tagged 3T3 Cells , 2007, Annals of Biomedical Engineering.

[144]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[145]  R. Milo,et al.  Dynamic Proteomics of Individual Cancer Cells in Response to a Drug , 2008, Science.

[146]  G. Casari,et al.  A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. , 2004, Nature cell biology.

[147]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[148]  Marek Kimmel,et al.  Mathematical model of NF- κB regulatory module , 2004 .

[149]  P. Chattopadhyay,et al.  Seventeen-colour flow cytometry: unravelling the immune system , 2004, Nature Reviews Immunology.

[150]  W. Rappel,et al.  Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.