Power system observability via optimization

[1]  H. Scheffé,et al.  The Analysis of Variance , 1960 .

[2]  G. Krumpholz,et al.  Power System Observability: A Practical Algorithm Using Network Topology , 1980, IEEE Transactions on Power Apparatus and Systems.

[3]  V. Quintana,et al.  Power System Topological Observability Using a Direct Graph-Theoretic Approach , 1982, IEEE Transactions on Power Apparatus and Systems.

[4]  K.A. Clements,et al.  Power System State Estimation with Measurement Deficiency: An Algorithm that Determines the Maximal Observable Subnetwork , 1982, IEEE Transactions on Power Apparatus and Systems.

[5]  G. R. Krumpholz,et al.  Power System State Estimation with Measurement Deficiency: An Observability/Measurement Placement Algorithm , 1983, IEEE Power Engineering Review.

[6]  Felix Wu,et al.  Network Observability: Identification of Observable Islands and Measurement Placement , 1985, IEEE Transactions on Power Apparatus and Systems.

[7]  Felix F. Wu,et al.  Network Observability: Theory , 1985, IEEE Power Engineering Review.

[8]  T. Cutsem Power system observability and related functions Derivation of appropriate strategies and algorithms , 1985 .

[9]  Felix F. Wu,et al.  Observability Analysis for Orthogonal Transformation Based State Estimation , 1986, IEEE Transactions on Power Systems.

[10]  Ilya W. Slutsker,et al.  Network Observability Analysis through Measurement Jacobian Matrix Reduction , 1987 .

[11]  Felix F. Wu,et al.  Observability analysis and bad data processing for state estimation using Hachtel's augmented matrix method , 1988 .

[12]  George N. Korres,et al.  A reduced model for power system observability: analysis and restoration , 1988 .

[13]  Felix F. Wu,et al.  Observability analysis and bad data processing for state estimation with equality constraints , 1988 .

[14]  R.L. Chen A fast integer algorithm for observability analysis using network topology , 1989, Conference Papers Power Industry Computer Application Conference.

[15]  W. Tinney,et al.  State estimation using augmented blocked matrices , 1990 .

[16]  M. Gilles,et al.  A blocked sparse matrix formulation for the solution of equality-constrained state estimation , 1991, IEEE Power Engineering Review.

[17]  M. Gilles,et al.  Observability analysis: a new topological algorithm , 1991 .

[18]  M. Gilles,et al.  Observability and bad data analysis using augmented blocked matrices (power system analysis computing) , 1993 .

[19]  D. Falcão,et al.  State estimation and observability analysis based on echelon forms of the linearized measurement models , 1994 .

[20]  N. Bretas Network observability: theory and algorithms based on triangular factorisation and path graph concepts , 1996 .

[21]  B. Gou,et al.  A direct numerical method for observability analysis , 2000 .

[22]  B. Gou,et al.  An Improved Measurement Placement Algorithm for Network Observability , 2001, IEEE Power Engineering Review.

[23]  G. Korres,et al.  A Hybrid Method for Observability Analysis Using a Reduced Network Graph Theory , 2002, IEEE Power Engineering Review.

[24]  K. Clements,et al.  Numerical observability analysis based on network graph theory , 2003 .

[25]  A. G. Expósito,et al.  Power system state estimation : theory and implementation , 2004 .

[26]  A. Conejo,et al.  State estimation observability based on the null space of the measurement Jacobian matrix , 2005, IEEE Transactions on Power Systems.

[27]  A. Conejo,et al.  Observability analysis in state estimation: a unified numerical approach , 2006, IEEE Transactions on Power Systems.

[28]  B. Gou Jacobian matrix-based observability analysis for state estimation , 2006, IEEE Transactions on Power Systems.

[29]  Gou Bei Observability analysis for state estimation using Hachtel’s augmented matrix method , 2007 .

[30]  N. Bretas,et al.  Analysis of measurement-set qualitative characteristics for state-estimation purposes , 2007 .

[31]  Antonio J. Conejo,et al.  Electric Energy Systems : Analysis and Operation , 2008 .

[32]  A.V. Garcia,et al.  On the Use of Gram Matrix in Observability Analysis , 2008, IEEE Transactions on Power Systems.

[33]  A.V. Garcia,et al.  Power System Observability Analysis Based on Gram Matrix and Minimum Norm Solution , 2008, IEEE Transactions on Power Systems.

[34]  A. Conejo,et al.  Binary-arithmetic approach to observability checking in state estimation , 2009 .

[35]  A. Conejo,et al.  Power System State Estimation Considering Measurement Dependencies , 2009, IEEE Transactions on Power Systems.

[36]  Arindam Ghosh,et al.  Inclusion of PMU current phasor measurements in a power system state estimator , 2010 .

[37]  A. Conejo,et al.  Calculation of Measurement Correlations Using Point Estimate , 2010, IEEE Transactions on Power Delivery.

[38]  A. Conejo,et al.  An efficient algebraic approach to observability analysis in state estimation , 2010 .

[39]  G. Andersson,et al.  Multiple Bad Data Identification Considering Measurement Dependencies , 2011, IEEE Transactions on Power Systems.

[40]  G. Korres A Gram Matrix-Based Method for Observability Restoration , 2011, IEEE Transactions on Power Systems.

[41]  G. Korres An integer-arithmetic algorithm for observability analysis of systems with SCADA and PMU measurement , 2011 .

[42]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[43]  Antonio J. Conejo,et al.  Participation factor approach for phasor measurement unit placement in power system state estimation , 2012 .

[44]  A. Conejo,et al.  State estimation via mathematical programming: a comparison of different estimation algorithms , 2012 .

[45]  Nikolaos M. Manousakis,et al.  State estimation and observability analysis for phasor measurement unit measured systems , 2012 .

[46]  Ali Abur,et al.  Observability and Criticality Analyses for Power Systems Measured by Phasor Measurements , 2013, IEEE Transactions on Power Systems.