The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter

This thesis is devoted to studying a class of quantum error-correcting codes — topological quantum codes. We explore the question of how one can achieve fault- tolerant quantum computation with topological codes. We treat quantum error-correcting codes not only as a compelling ingredient needed to build a quantum computer, but also as a useful theoretical tool in other areas of physics. In particular, we explore what insights topological codes can provide into challenging questions, such as the classification of quantum phases of matter. In this thesis, we focus on a family of topological codes — color codes, which are particularly intriguing due to the rich physics they display and their computational power. We start by introducing color codes and explaining their basic properties. Then, we show how to perform fault-tolerant universal quantum computation with three-dimensional color codes by transverse gates and code switching. We later compare the resource overhead of the code-switching approach with that of a state distillation scheme. We discuss how to perform error correction with the toric and color codes, as well as introduce local decoders for those two families of codes. By exploiting a connection between error correction and statistical mechanics we estimate the storage threshold error rates for bit-flip and phase-flip noise in the three-dimensional color code. We finish by showing that the color and toric code families in d dimensions are equivalent in a sense of local unitary transformations and explore implications of this equivalence.

[1]  Lawrence Gray,et al.  A Reader's Guide to Gacs's “Positive Rates” Paper , 2001 .

[2]  Geoffrey Grinstein,et al.  Can complex structures be generically stable in a noisy world? , 2004, IBM J. Res. Dev..

[3]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[5]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[6]  Kamil P Michnicki,et al.  3D topological quantum memory with a power-law energy barrier. , 2014, Physical review letters.

[7]  Fernando Pastawski,et al.  Quantum memories based on engineered dissipation , 2010, 1010.2901.

[8]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[9]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[10]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[12]  K. Wilson Confinement of Quarks , 1974 .

[13]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[14]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[15]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[16]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[17]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[18]  M. Kardar Statistical physics of fields , 2007 .

[19]  Tetsuo Matsui,et al.  Phase structure of the random plaquette Z(2) gauge model: Accuracy threshold for a toric quantum memory , 2004, quant-ph/0401101.

[20]  Quantum criticality from Ising model on fractal lattices , 2014, 1404.6311.

[21]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[22]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[23]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[24]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[25]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[26]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[27]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[29]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[30]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[31]  T. Monz,et al.  Experimental Quantum Computations on a Topologically Encoded Qubit , 2014 .

[32]  Beni Yoshida,et al.  Ungauging quantum error-correcting codes , 2018, 1805.01836.

[33]  F. Wegner Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters , 1971 .

[34]  Isaac L. Chuang,et al.  Framework for classifying logical operators in stabilizer codes , 2010, 1002.0085.

[35]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[36]  Beni Yoshida,et al.  Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes , 2010, 1007.4601.

[37]  M. Freedman,et al.  A Blueprint for a Topologically Fault-tolerant Quantum Computer , 2010, 1003.2856.

[38]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[39]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[40]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[41]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[42]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[43]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[44]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[45]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  John Preskill,et al.  Protected gates for topological quantum field theories , 2014, 1409.3898.

[47]  John Preskill,et al.  Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping. , 2017, Physical review letters.

[48]  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[49]  Maissam Barkeshli,et al.  Theory of defects in Abelian topological states , 2013, 1305.7203.

[50]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[51]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[52]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[54]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[55]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[56]  Michael Levin,et al.  Braiding statistics approach to symmetry-protected topological phases , 2012, 1202.3120.

[57]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[58]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[59]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[60]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[61]  Theodore J. Yoder,et al.  The disjointness of stabilizer codes and limitations on fault-tolerant logical gates , 2017, 1710.07256.

[62]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[63]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[64]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[65]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[66]  A Honecker,et al.  Universality class of the Nishimori point in the 2D +/- J random-bond Ising model. , 2001, Physical review letters.

[67]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[68]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[69]  Andrew J. Landahl,et al.  Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic , 2013, 1302.3240.

[70]  Ruben S. Andrist,et al.  Understanding topological quantum error-correction codes using classical spin models , 2012 .

[71]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[72]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[73]  H. Bombin,et al.  An Introduction to Topological Quantum Codes , 2013, 1311.0277.

[74]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[75]  S. Sachdev Quantum Phase Transitions , 1999 .

[76]  M. B. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005 .

[77]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[78]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[79]  P. Recher,et al.  Unpaired Majorana fermions in quantum wires , 2001 .

[80]  S. Elitzur,et al.  Impossibility of spontaneously breaking local symmetries , 1975 .

[81]  Barbara M. Terhal,et al.  Constructions and Noise Threshold of Hyperbolic Surface Codes , 2015, IEEE Transactions on Information Theory.

[82]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[83]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[84]  Péter Gács,et al.  A Simple Three-Dimensional Real-Time Reliable Cellular Array , 1988, J. Comput. Syst. Sci..

[85]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[86]  Liang Kong,et al.  Models for Gapped Boundaries and Domain Walls , 2011, 1104.5047.

[87]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[88]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[89]  Lee,et al.  Finite-size scaling and Monte Carlo simulations of first-order phase transitions. , 1991, Physical review. B, Condensed matter.

[90]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[91]  Salman Beigi,et al.  The Quantum Double Model with Boundary: Condensations and Symmetries , 2010, 1006.5479.

[92]  Y. Ozeki,et al.  MULTICRITICAL DYNAMICS FOR THE J ISING MODEL , 1998 .

[93]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .

[94]  Claudio Rebbi,et al.  Monte Carlo Study of Abelian Lattice Gauge Theories , 1979 .

[95]  Andrew M. Steane Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.

[96]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[97]  B. M. Terhal,et al.  Renormalization Group Decoder for a Four-Dimensional Toric Code , 2017, IEEE Transactions on Information Theory.

[98]  Borgs,et al.  Finite-size effects at asymmetric first-order phase transitions. , 1992, Physical review letters.

[99]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[100]  M. Hasenbusch,et al.  Magnetic-glassy multicritical behavior of the three-dimensional +- J Ising model , 2007, 0707.2866.

[101]  Héctor Bombín Structure of 2D Topological Stabilizer Codes , 2011 .

[102]  Ashley M. Stephens,et al.  Efficient fault-tolerant decoding of topological color codes , 2014, 1402.3037.

[103]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[104]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[105]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[106]  Nicolas Delfosse,et al.  Decoding color codes by projection onto surface codes , 2013, ArXiv.

[107]  Michael Levin,et al.  Protected edge modes without symmetry , 2013, 1301.7355.

[108]  Leonid P. Pryadko,et al.  Spin glass reflection of the decoding transition for quantum error correcting codes , 2013, Quantum Inf. Comput..

[109]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[110]  Peter Gács A Toom rule that increases the thickness of sets , 1990 .

[111]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[112]  H. Bombin,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[113]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[114]  David Poulin,et al.  Hardness of Decoding Quantum Stabilizer Codes , 2013, IEEE Transactions on Information Theory.

[115]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[116]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[117]  Matthias Troyer,et al.  Feedback-optimized parallel tempering Monte Carlo , 2006, cond-mat/0602085.

[118]  Andrew J. Landahl,et al.  QIP 2012: Fault-tolerant quantum computing with color codes. , 2011 .

[119]  R. Raussendorf,et al.  Efficient decoding of topological color codes , 2011, 1111.0831.

[120]  R. Ho Algebraic Topology , 2022 .

[121]  John Preskill,et al.  Lecture Notes for Physics 219: Quantum Computation , 2004 .

[122]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[123]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[124]  H. Bombin,et al.  Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.

[125]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[126]  Bennett,et al.  Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems. , 1985, Physical review letters.

[127]  Binder,et al.  Finite-size effects at temperature-driven first-order transitions. , 1986, Physical review. B, Condensed matter.

[128]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[129]  David Poulin,et al.  Kitaev's Z_d-Codes Threshold Estimates , 2013, TQC.

[130]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[131]  Beni Yoshida,et al.  Exotic topological order in fractal spin liquids , 2013, 1302.6248.

[132]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[133]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[134]  Austin G. Fowler,et al.  Graphical algorithms and threshold error rates for the 2d color code , 2009, Quantum Inf. Comput..

[135]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[136]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[137]  H. Poincaré,et al.  Percolation ? , 1982 .

[138]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.