Couplings, distances and contractivity for diffusion processes revisited
暂无分享,去创建一个
[1] Hiroshi Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .
[2] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[3] P. Lions,et al. Stochastic differential equations with reflecting boundary conditions , 1984 .
[4] M. Freidlin. Functional Integration And Partial Differential Equations , 1985 .
[5] K. D. Elworthy,et al. FUNCTIONAL INTEGRATION AND PARTIAL DIFFERENTIAL EQUATIONS (Annals of Mathematics Studies, 109) , 1986 .
[6] L. Rogers,et al. Coupling of Multidimensional Diffusions by Reflection , 1986 .
[7] Mu-Fa Chen,et al. Coupling Methods for Multidimensional Diffusion Processes , 1989 .
[8] W. Kendall. Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel , 1989 .
[9] M. Cranston,et al. Noncoalescence for the Skorohod equation in a convex domain of ℝ2 , 1990 .
[10] M. Cranston. Gradient estimates on manifolds using coupling , 1991 .
[11] T. Lindvall. Lectures on the Coupling Method , 1992 .
[12] Rick Durrett,et al. From Markov Chains to Nonequilibrium Particle Systems (Mu Fa Chen) , 1993, SIAM Rev..
[13] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[14] Feng-Yu Wang. Application of coupling methods to the Neumann eigenvalue problem , 1994 .
[15] Mu-Fa Chen,et al. Estimation of the First Eigenvalue of Second Order Elliptic Operators , 1995 .
[16] Michel Émery,et al. Séminaire de probabilités XXIX , 1995 .
[17] P. Diaconis,et al. The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[18] Feng-Yu Wang,et al. Estimation of spectral gap for elliptic operators , 1997 .
[19] Elton P. Hsu. Stochastic analysis on manifolds , 2002 .
[20] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[21] 王 风雨. Functional inequalities, Markov semigroups and spectral theory , 2005 .
[22] K. Burdzy,et al. Synchronous couplings of reflected Brownian motions in smooth domains , 2005, math/0501486.
[23] Persi Diaconis,et al. Separation cut-offs for birth and death chains , 2006, math/0702411.
[24] Y. Peres,et al. Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability , 2007, 0712.0790.
[25] Donald Babbitt,et al. An Initiation to Logarithmic Sobolev Inequalities , 2007 .
[26] D. Bakry,et al. Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.
[27] Jonathan C. Mattingly,et al. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.
[28] Guan-Yu Chen,et al. The cutoff phenomenon for ergodic Markov processes , 2008 .
[29] Jonathan C. Mattingly,et al. Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations , 2009, 0902.4495.
[30] A. Joulin. A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature , 2009, 0906.2280.
[31] Samuel Herrmann Julian Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes , 2009, 0903.2460.
[32] E. Vanden-Eijnden,et al. Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.
[33] Y. Ollivier,et al. CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.
[34] A. Eberle. Reflection coupling and Wasserstein contractivity without convexity , 2011 .
[35] T. Komorowski,et al. Central limit theorem for Markov processes with spectral gap in the Wasserstein metric , 2011, 1102.1842.
[36] S. Andres. Pathwise Differentiability for SDEs in a Smooth Domain with Reflection , 2011 .
[37] S. Glotzer,et al. Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.
[38] Nawaf Bou-Rabee,et al. A patch that imparts unconditional stability to explicit integrators for Langevin-like equations , 2012, J. Comput. Phys..
[39] J. Tugaut,et al. Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit , 2012 .
[40] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[41] Chih-Yueh Wang,et al. Partial differential equations for probabilists , 2014 .
[42] P. Cattiaux,et al. Semi Log-Concave Markov Diffusions , 2013, 1303.6884.
[43] A. Eberle. Error bounds for Metropolis–Hastings algorithms applied to perturbations of Gaussian measures in high dimensions , 2012, 1210.1180.