Couplings, distances and contractivity for diffusion processes revisited

We consider contractivity for diffusion semigroups w.r.t. Kantorovich ($$L^1$$L1 Wasserstein) distances based on appropriately chosen concave functions. These distances are inbetween total variation and usual Wasserstein distances. It is shown that by appropriate explicit choices of the underlying distance, contractivity with rates of close to optimal order can be obtained in several fundamental classes of examples where contractivity w.r.t. standard Wasserstein distances fails. Applications include overdamped Langevin diffusions with locally non-convex potentials, products of these processes, and systems of weakly interacting diffusions, both of mean-field and nearest neighbour type.

[1]  Hiroshi Tanaka Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .

[2]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[3]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[4]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[5]  K. D. Elworthy,et al.  FUNCTIONAL INTEGRATION AND PARTIAL DIFFERENTIAL EQUATIONS (Annals of Mathematics Studies, 109) , 1986 .

[6]  L. Rogers,et al.  Coupling of Multidimensional Diffusions by Reflection , 1986 .

[7]  Mu-Fa Chen,et al.  Coupling Methods for Multidimensional Diffusion Processes , 1989 .

[8]  W. Kendall Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel , 1989 .

[9]  M. Cranston,et al.  Noncoalescence for the Skorohod equation in a convex domain of ℝ2 , 1990 .

[10]  M. Cranston Gradient estimates on manifolds using coupling , 1991 .

[11]  T. Lindvall Lectures on the Coupling Method , 1992 .

[12]  Rick Durrett,et al.  From Markov Chains to Nonequilibrium Particle Systems (Mu Fa Chen) , 1993, SIAM Rev..

[13]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[14]  Feng-Yu Wang Application of coupling methods to the Neumann eigenvalue problem , 1994 .

[15]  Mu-Fa Chen,et al.  Estimation of the First Eigenvalue of Second Order Elliptic Operators , 1995 .

[16]  Michel Émery,et al.  Séminaire de probabilités XXIX , 1995 .

[17]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Feng-Yu Wang,et al.  Estimation of spectral gap for elliptic operators , 1997 .

[19]  Elton P. Hsu Stochastic analysis on manifolds , 2002 .

[20]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[21]  王 风雨 Functional inequalities, Markov semigroups and spectral theory , 2005 .

[22]  K. Burdzy,et al.  Synchronous couplings of reflected Brownian motions in smooth domains , 2005, math/0501486.

[23]  Persi Diaconis,et al.  Separation cut-offs for birth and death chains , 2006, math/0702411.

[24]  Y. Peres,et al.  Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability , 2007, 0712.0790.

[25]  Donald Babbitt,et al.  An Initiation to Logarithmic Sobolev Inequalities , 2007 .

[26]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[27]  Jonathan C. Mattingly,et al.  Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.

[28]  Guan-Yu Chen,et al.  The cutoff phenomenon for ergodic Markov processes , 2008 .

[29]  Jonathan C. Mattingly,et al.  Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations , 2009, 0902.4495.

[30]  A. Joulin A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature , 2009, 0906.2280.

[31]  Samuel Herrmann Julian Tugaut Non-uniqueness of stationary measures for self-stabilizing processes , 2009, 0903.2460.

[32]  E. Vanden-Eijnden,et al.  Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.

[33]  Y. Ollivier,et al.  CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO , 2009, 0904.1312.

[34]  A. Eberle Reflection coupling and Wasserstein contractivity without convexity , 2011 .

[35]  T. Komorowski,et al.  Central limit theorem for Markov processes with spectral gap in the Wasserstein metric , 2011, 1102.1842.

[36]  S. Andres Pathwise Differentiability for SDEs in a Smooth Domain with Reflection , 2011 .

[37]  S. Glotzer,et al.  Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.

[38]  Nawaf Bou-Rabee,et al.  A patch that imparts unconditional stability to explicit integrators for Langevin-like equations , 2012, J. Comput. Phys..

[39]  J. Tugaut,et al.  Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit , 2012 .

[40]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[41]  Chih-Yueh Wang,et al.  Partial differential equations for probabilists , 2014 .

[42]  P. Cattiaux,et al.  Semi Log-Concave Markov Diffusions , 2013, 1303.6884.

[43]  A. Eberle Error bounds for Metropolis–Hastings algorithms applied to perturbations of Gaussian measures in high dimensions , 2012, 1210.1180.