Parameter estimation only from the symbolic sequences generated by chaos system

[1]  Nicholas D. Kazarinoff,et al.  On the universal sequence generated by a class of unimodal functions , 1987, J. Comb. Theory, Ser. A.

[2]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[3]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[4]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[5]  M. Baptista Cryptography with chaos , 1998 .

[6]  Gonzalo Alvarez,et al.  Gray codes and 1D quadratic maps , 1998 .

[7]  T. W. Cusick Gray codes and the symbolic dynamics of quadratic maps , 1999 .

[8]  E. Alvarez,et al.  New approach to chaotic encryption , 1999 .

[9]  Kwok-wo Wong,et al.  A modified chaotic cryptographic method , 2001 .

[10]  Ljupco Kocarev,et al.  Analysis of some recently proposed chaos-based encryption algo-rithms , 2001 .

[11]  John R. Terry,et al.  Chaotic communication using generalized synchronization , 2001 .

[12]  K. Wong,et al.  A fast chaotic cryptographic scheme with dynamic look-up table , 2002 .

[13]  G. Álvarez,et al.  Cryptanalysis of an ergodic chaotic cipher , 2003 .

[14]  Kwok-Wo Wong,et al.  A chaotic cryptography scheme for generating short ciphertext , 2003 .

[15]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[16]  Moez Feki,et al.  Secure digital communication using discrete-time chaos synchronization , 2003 .

[17]  X. Mou,et al.  Performance analysis of Jakimoski–Kocarev attack on a class of chaotic cryptosystems , 2003 .