An efficient PDE-constrained stochastic inverse algorithm for probabilistic geotechnical site characterization using geophysical measurements

Abstract This paper develops an efficient, PDE-constrained stochastic inverse analysis methodology to probabilistically estimate site-specific elastic parameters of soil from sparse geophysical test measurements by accounting for the uncertain spatial variability of soil deposits and any measurement uncertainty associated with the geophysical experiment. Hypothesizing the soil parameters at any site to be three-dimensional, heterogeneous, anisotropic random fields, the methodology first probabilistically simulates the geophysical experiment using the finite element method in conjunction with a stochastic collocation approach to compute statistical measures of a quantity of interest such as the soil displacement or acceleration throughout the soil domain. To this end, the random fields are discretized into finite number of random variables by utilizing a Gaussian mixture model that allows for mimicking the soil formation process. The parameters of the random fields are initially assumed based on the generic data available in the literature for the geological soil type. The stochastic collocation approach utilizes a recently developed non-product quadrature method, conjugate unscented transformation, to accurately estimate the statistical moments corresponding to the model response variables in a computationally efficient manner. The methodology, then, employs a minimum variance framework to fuse the finite element model output with sparse real measurements to update the initially assumed soil statistical parameters. The methodology is illustrated through numerical geophysical experiments at a fictitious geotechnical site and is verified with three very different true profiles of the soil modulus. Moreover, a probabilistic sensitivity analysis is carried out by varying the number and locations of sensors. It is observed that by judiciously selecting the sensor locations, following a set of information maps, obtained by exploiting the equations of the minimum variance scheme, more information may be extracted from any geophysical experiments, leading to less uncertain estimates of the soil parameters.

[1]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[2]  Joel P. Conte,et al.  Uncertainty Quantification in the Assessment of Progressive Damage in a 7-Story Full-Scale Building Slice , 2013 .

[3]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[7]  M. D. Ruiz-Medina,et al.  Multi-resolution approximation to the stochastic inverse problem , 1999, Advances in Applied Probability.

[8]  Tarunraj Singh,et al.  Conjugate Unscented Transform and its Application to Filtering and Stochastic Integral Calculation , 2012 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  D. D. Kosambi Statistics in Function Space , 2016 .

[11]  James D. Turner,et al.  A high order method for estimation of dynamic systems , 2008 .

[12]  T. Singh,et al.  Polynomial-chaos-based Bayesian approach for state and parameter estimations , 2013 .

[13]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[14]  Baskar Ganapathysubramanian,et al.  A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach , 2008, J. Comput. Phys..

[15]  Joseph E. Bowles,et al.  Foundation analysis and design , 1968 .

[16]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[17]  Puneet Singla,et al.  Conjugate Unscented Transformation-Based Approach for Accurate Conjunction Analysis , 2015 .

[18]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[19]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[20]  A. Morelli Inverse Problem Theory , 2010 .

[21]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[22]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[23]  Andrés Sahuquillo,et al.  Stochastic Inverse Problems In GroundwaterModeling , 2000 .

[24]  Omar Ghattas,et al.  Site characterization using full waveform inversion , 2013 .

[25]  P. Stark Inverse problems as statistics , 2002 .

[26]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[27]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[28]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[29]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[31]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[32]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[33]  Puneet Singla,et al.  Conjugate Unscented Transformation: Applications to Estimation and Control , 2018 .

[34]  K. Phoon,et al.  Characterization of Geotechnical Variability , 1999 .

[35]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[36]  Tadeusz J. Ulrych,et al.  A Bayes tour of inversion: A tutorial , 2001 .

[37]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[38]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[39]  John E. Mottershead,et al.  Stochastic model updating: Part 1—theory and simulated example , 2006 .

[40]  P. Singla,et al.  Sparse Approximation-Based Collocation Scheme for Nonlinear Optimal Feedback Control Design , 2017 .

[41]  J. Scales,et al.  Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis , 1998 .

[42]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .

[43]  Loukas F. Kallivokas,et al.  Varying dimensional Bayesian acoustic waveform inversion for 1D semi-infinite heterogeneous media , 2015 .

[44]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[45]  Kenneth H. Stokoe,et al.  Three-dimensional P- and S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field data , 2016 .

[46]  E. Vanmarcke Probabilistic Modeling of Soil Profiles , 1977 .

[47]  Erik H. Vanmarcke,et al.  Stochastic finite elements and experimental measurements , 1994 .

[48]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .