Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices

We present 15 new partial dierence sets over 4 non-abelian groups of order 100 and 2 new strongly regular graphs with intransitive automorphism groups. The strongly regular graphs and corresponding partial dierence sets have the following parameters: (100,22,0,6), (100,36,14,12), (100,45,20,20), (100,44,18,20). The existence of strongly regular graphs with the latter set of parameters was an open question. Our method is based on combination of Galois correspondence between permutation groups and association schemes, classical Seidel’s switching of edges and essential use of computer algebra packages. As a by-product, a few new amorphic association schemes with 3 classes on 100 points are discovered.

[1]  Robert A. Wilson,et al.  Maximal Subgroups of Automorphism Groups of Simple Groups , 1985 .

[2]  P. Cameron,et al.  PERMUTATION GROUPS , 2019, Group Theory for Physicists.

[3]  E. V. Dam Three-Class Association Schemes , 1999 .

[4]  J. J. Seidel Strongly Regular Graphs of L2-type and of Triangular Type , 1967 .

[5]  Larry Finkelstein,et al.  Maximal subgroups of the Hall-Janko-Wales group , 1973 .

[6]  R. C. Bose,et al.  Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture , 1960, Canadian Journal of Mathematics.

[7]  David B. Wales UNIQUENESS OF THE GRAPH OF A RANK THREE GROUP , 1969 .

[8]  G. Jones PERMUTATION GROUPS (London Mathematical Society Student Texts 45) , 2000 .

[9]  M. Klin,et al.  Cellular Rings and Groups of Automorphisms of Graphs , 1994 .

[10]  Michael Aschbacher,et al.  Sporadic groups , 1994, Cambridge tracts in mathematics.

[11]  A. Gewirtz,et al.  Graphs with Maximal Even Girth , 1969, Canadian Journal of Mathematics.

[12]  Edward A. Komissartschik,et al.  Intersections of maximal subgroups in simple groups of order less than 106 , 1986 .

[13]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[14]  Z Liu AN EXAMPLE OF THE NON-UNIQUENESS OF THE L_5(10) ASSOCIATION SCHEME , 1983 .

[15]  Vladimir D. Tonchev,et al.  Bush‐type Hadamard matrices and symmetric designs , 2001 .

[16]  Robert A. Liebler Constructive Representation Theoretic Methods and Non-Abelian Difference Sets , 1999 .

[17]  B. McKay,et al.  Constructing cospectral graphs , 1982 .

[18]  Charles C. Sims,et al.  A simple group of order 44,352,000 , 1968 .

[19]  Arunas Rudvalis (v, k, λ)-Graphs and polarities of (v, k, λ)-designs , 1971 .

[20]  Jr. Hall,et al.  Cyclic projective planes , 1947 .

[21]  Anka Golemac,et al.  New (100, 45, 20) symmetric designs and Bush-type Hadamard matrices of order 100 , 2002, Discret. Math..

[22]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[23]  Zvonimir Janko,et al.  Some new simple groups of finite order , 1967 .

[24]  Siu Lun Ma,et al.  A survey of partial difference sets , 1994, Des. Codes Cryptogr..

[25]  Tanja Vu i i New symmetric designs and nonabelian difference sets with parameters(100, 45, 20) , 2000 .

[26]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[27]  J. J. Seidel,et al.  SYMMETRIC HADAMARD MATRICES OF ORDER 36 , 1970 .

[28]  S. S. Shrikhande,et al.  Seidel-equivalence of strongly regular graphs , 1968 .

[29]  John McKay,et al.  The non-abelian simple groups g, |g| < 105— presentations , 1979 .

[30]  Mohan S. Shrikhande,et al.  Strongly regular graphs with strongly regular decompositions , 1991 .

[31]  Anka Golemac,et al.  New difference sets in nonabelian groups of order 100 , 2001 .

[32]  László Babai,et al.  Isomorphism problem for a class of point-symmetric structures , 1977 .

[33]  R. Turyn Character sums and difference sets. , 1965 .

[34]  Leonard H. Soicher,et al.  GRAPE: A System for Computing with Graphs and Groups , 1991, Groups And Computation.

[35]  D. R. Hughes Design Theory , 1985 .

[36]  J. Fischer,et al.  The Nonabelian Simple Groups G, | G | < 10 6 -Maximal Subgroups , 1978 .

[37]  Reinhard Pöschel,et al.  Angewandte Algebra für Mathematiker und Informatiker , 1988 .

[38]  W. L. Edge The simple group of order 6048 , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Peter J. Cameron,et al.  Designs, graphs, codes, and their links , 1991 .

[40]  Ken W. Smith,et al.  Non-Abelian Hadamard Difference Sets , 1995, J. Comb. Theory, Ser. A.

[41]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[42]  Mikhail E. Muzychuk,et al.  On graphs with three eigenvalues , 1998, Discret. Math..

[43]  Siu Lun Ma Partial difference sets , 1984, Discret. Math..

[44]  Andries E. Brouwer,et al.  Strongly Regular Graphs , 2022 .

[45]  J. J. Seidel,et al.  STRONGLY REGULAR GRAPHS OF L2-TYPE AND OF TRIANGULAR TYPE , 1967 .

[46]  R. T. Curtis SPORADIC GROUPS (Cambridge Tracts in Mathematics 104) , 1996 .

[47]  Sharad S. Sane,et al.  Classification of (16, 6, 2)-designs by ovals , 1984, Discret. Math..

[48]  Spyros S. Magliveras The subgroup structure of the Higman-Sims simple group , 1971 .

[49]  J. J. Seidel,et al.  Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.

[50]  Willem H. Haemers,et al.  Strongly regular graphs with strongly regular decomposition , 1989 .