A Dual-Loop Eight-Channel ECG Recording System With Fast Settling Mode for 12-Lead Applications

A dual-loop eight-channel electrocardiogram (ECG) recording system with the fast settling mode is proposed for wireless real-time 12-lead ECG applications. It employs the frequency division multiplexing (FDM) technique to achieve multi-channel IA (MCIA). The FDM technique allows using smaller input capacitor and sharing of programmable gain amplifier (PGA), buffer, and ADC to achieve smaller area. To suppress the dc offset of bio-signal with faster settling, dual dc servo loops are proposed. The main loop employs the least-mean-square (LMS) algorithm in the digital domain to extract the dc offsets in different frequency channels. An auxiliary fast settling loop (FSL) in the analog domain can be enabled to shorten the settling time from 14 s down to only 0.6 s. A 16-bit <inline-formula> <tex-math notation="LaTeX">$\Sigma \Delta $ </tex-math></inline-formula> ADC, including the decimation filter, is adopted to achieve high resolution and avoid using high Q anti-aliasing filter in the analog domain. The MCIA achieves 112.5-dB common mode rejection ratio (CMRR), 113.0-dB power supply rejection ratio (PSRR), and 1.44-<inline-formula> <tex-math notation="LaTeX">$\mu ~V_{\mathbf {rms}}$ </tex-math></inline-formula> noise performance. The MCIA occupies only 0.3 mm<sup>2</sup> and consumes 60 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> for eight channels. The whole ECG recording system was implemented in 130-nm CMOS technology.

[1]  Wing-Hung Ki,et al.  Chopper Capacitively Coupled Instrumentation Amplifier Capable of Handling Large Electrode Offset for Biopotential Recordings , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Roman Genov,et al.  Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[3]  Quan Sun,et al.  A Low-Noise, Low-Power Amplifier With Current-Reused OTA for ECG Recordings , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[4]  David Blaauw,et al.  A 266nW multi-chopper amplifier with 1.38 noise efficiency factor for neural signal recording , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[5]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[6]  Yong Lian,et al.  A 0.5-V 35-$ \mu $W 85-dB DR Double-Sampled $\Delta\Sigma$ Modulator for Audio Applications , 2012, IEEE Journal of Solid-State Circuits.

[7]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[8]  Refet Firat Yazicioglu,et al.  A $160~\mu {\rm W}$ 8-Channel Active Electrode System for EEG Monitoring , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Chun-Huat Heng,et al.  A 93μW 11Mbps wireless vital signs monitoring SoC with 3-lead ECG, bio-impedance, and body temperature , 2017, 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[10]  David Blaauw,et al.  An Injectable 64 nW ECG Mixed-Signal SoC in 65 nm for Arrhythmia Monitoring , 2015, IEEE Journal of Solid-State Circuits.

[11]  Wan-Young Chung,et al.  Wearable Noncontact Armband for Mobile ECG Monitoring System , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[12]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[13]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[14]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[15]  Refet Firat Yazicioglu,et al.  18.3 A multi-parameter signal-acquisition SoC for connected personal health applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[16]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[17]  Refet Firat Yazicioglu,et al.  Measurement and Analysis of Current Noise in Chopper Amplifiers , 2013, IEEE Journal of Solid-State Circuits.

[18]  Gerwin H. Gelinck,et al.  A Fully Integrated 11.2-mm2 a-IGZO EMG Front-End Circuit on Flexible Substrate Achieving Up to 41-dB SNR and 29-M $\Omega$ Input Impedance , 2018, IEEE Solid-State Circuits Letters.

[19]  Yi-Lin Tsai,et al.  5.3 A 2-channel −83.2dB crosstalk 0.061mm2 CCIA with an orthogonal frequency chopping technique , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[20]  Refet Firat Yazicioglu,et al.  A Multi(bio)sensor Acquisition System With Integrated Processor, Power Management, $8 \times 8$ LED Drivers, and Simultaneously Synchronized ECG, BIO-Z, GSR, and Two PPG Readouts , 2016, IEEE Journal of Solid-State Circuits.

[21]  Yong Lian,et al.  A 300-mV 220-nW Event-Driven ADC With Real-Time QRS Detection for Wearable ECG Sensors , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[22]  Kofi A. A. Makinwa,et al.  A 21 nV/$\surd$ Hz Chopper-Stabilized Multi-Path Current-Feedback Instrumentation Amplifier With 2 $\mu$ V Offset , 2012, IEEE Journal of Solid-State Circuits.

[23]  Refet Firat Yazicioglu,et al.  A 160 $\mu{\rm A}$ Biopotential Acquisition IC With Fully Integrated IA and Motion Artifact Suppression , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[24]  J. C. Rudell,et al.  A scalable, highly-multiplexed delta-encoded digital feedback ECoG recording amplifier with common and differential-mode artifact suppression , 2017, 2017 Symposium on VLSI Circuits.

[25]  Refet Firat Yazicioglu,et al.  A 680 nA ECG Acquisition IC for Leadless Pacemaker Applications , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[26]  J. Rosell,et al.  Skin impedance from 1 Hz to 1 MHz , 1988, IEEE Transactions on Biomedical Engineering.

[27]  Refet Firat Yazicioglu,et al.  A 345 µW Multi-Sensor Biomedical SoC With Bio-Impedance, 3-Channel ECG, Motion Artifact Reduction, and Integrated DSP , 2015, IEEE Journal of Solid-State Circuits.

[28]  Refet Firat Yazicioglu,et al.  A 0.6-V, 0.015-mm2, Time-Based ECG Readout for Ambulatory Applications in 40-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[29]  E. Vittoz,et al.  A CMOS Chopper Amplifier , 1986, ESSCIRC '86: Twelfth European Solid-State Circuits Conference.

[30]  Chun-Huat Heng,et al.  A Dual Loop 8-Channel ECG Recording System with Fast Settling Mode , 2018, ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC).

[31]  Zhe Zhang,et al.  A 2.89 $\mu $ W Dry-Electrode Enabled Clockless Wireless ECG SoC for Wearable Applications , 2016, IEEE Journal of Solid-State Circuits.

[32]  Sankaran Aniruddhan,et al.  552 nW per channel 79 nV/rtHz ECG acquisition front-end with multi-frequency chopping , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[33]  Hao Gao,et al.  A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS , 2016, IEEE J. Solid State Circuits.