Smooth Fano Polytopes Arising from Finite Partially Ordered Sets
暂无分享,去创建一个
[1] Alexander M. Kasprzyk. Toric Fano three-folds with terminal singularities , 2006 .
[2] Richard P. Stanley,et al. Two poset polytopes , 1986, Discret. Comput. Geom..
[3] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[4] D. Wagner. Singularities of Toric Varieties Associated with Finite Distributive Lattices , 1996 .
[5] Mikkel Øbro,et al. An algorithm for the classification of smooth Fano polytopes , 2007 .
[6] Thomas Lam,et al. Alcoved Polytopes, I , 2007, Discret. Comput. Geom..
[7] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[8] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[9] Mikkel Obro. An algorithm for the classification of smooth Fano polytopes , 2007, 0704.0049.
[10] Maximilian Kreuzer,et al. Complete classification of reflexive polyhedra in four dimensions , 2000, hep-th/0002240.
[11] Hugh Thomas. Order-preserving maps from a poset to a chain, the order polytope, and the Todd class of the associated toric variety , 2003, Eur. J. Comb..
[12] M. Reid. Minimal Models of Canonical 3-Folds , 1983 .
[13] Benjamin Nill,et al. Q-factorial Gorenstein toric Fano varieties with large Picard number , 2008, 0805.4533.
[14] M. Kreuzer,et al. Classification of Reflexive Polyhedra in Three Dimensions , 1998 .
[15] A. Kasprzyk. Canonical Toric Fano Threefolds , 2008, Canadian Journal of Mathematics.
[16] Takayuki Hibi,et al. Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws , 1987 .
[17] Victor V. Batyrev,et al. Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties , 1993, alg-geom/9310003.
[18] C. Casagrande. The number of vertices of a Fano polytope , 2004 .