Smooth Fano Polytopes Arising from Finite Partially Ordered Sets

Gorenstein Fano polytopes arising from finite partially ordered sets will be introduced. Then we study the problem of which partially ordered sets yield smooth Fano polytopes.

[1]  Alexander M. Kasprzyk Toric Fano three-folds with terminal singularities , 2006 .

[2]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[3]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[4]  D. Wagner Singularities of Toric Varieties Associated with Finite Distributive Lattices , 1996 .

[5]  Mikkel Øbro,et al.  An algorithm for the classification of smooth Fano polytopes , 2007 .

[6]  Thomas Lam,et al.  Alcoved Polytopes, I , 2007, Discret. Comput. Geom..

[7]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  Mikkel Obro An algorithm for the classification of smooth Fano polytopes , 2007, 0704.0049.

[10]  Maximilian Kreuzer,et al.  Complete classification of reflexive polyhedra in four dimensions , 2000, hep-th/0002240.

[11]  Hugh Thomas Order-preserving maps from a poset to a chain, the order polytope, and the Todd class of the associated toric variety , 2003, Eur. J. Comb..

[12]  M. Reid Minimal Models of Canonical 3-Folds , 1983 .

[13]  Benjamin Nill,et al.  Q-factorial Gorenstein toric Fano varieties with large Picard number , 2008, 0805.4533.

[14]  M. Kreuzer,et al.  Classification of Reflexive Polyhedra in Three Dimensions , 1998 .

[15]  A. Kasprzyk Canonical Toric Fano Threefolds , 2008, Canadian Journal of Mathematics.

[16]  Takayuki Hibi,et al.  Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws , 1987 .

[17]  Victor V. Batyrev,et al.  Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties , 1993, alg-geom/9310003.

[18]  C. Casagrande The number of vertices of a Fano polytope , 2004 .