Classification of lung cancer histology images using patch-level summary statistics

There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which are grouped accordingly due to similarity in behaviour and response to treatment. The main types of NSCLC are lung adenocarcinoma (LUAD), which accounts for about 40% of all lung cancers and lung squamous cell carcinoma (LUSC), which accounts for about 25-30% of all lung cancers. Due to their differences, automated classification of these two main subtypes of NSCLC is a critical step in developing a computer aided diagnostic system. We present an automated method for NSCLC classification, that consists of a two-part approach. Firstly, we implement a deep learning framework to classify input patches as LUAD, LUSC or non-diagnostic (ND). Next, we extract a collection of statistical and morphological measurements from the labeled whole-slide image (WSI) and use a random forest regression model to classify each WSI as lung adenocarcinoma or lung squamous cell carcinoma. This task is part of the Computational Precision Medicine challenge at the MICCAI 2017 conference, where we achieved the greatest classification accuracy with a score of 0.81.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Joel H. Saltz,et al.  Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Nico Karssemeijer,et al.  Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images , 2017, Journal of medical imaging.

[4]  Ce Zhang,et al.  Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features , 2016, Nature Communications.

[5]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Erik Reinhard,et al.  Color Transfer between Images , 2001, IEEE Computer Graphics and Applications.

[7]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Aristotelis Tsirigos,et al.  Classification and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images using Deep Learning , 2017, bioRxiv.

[11]  Nasir M. Rajpoot,et al.  Representation-Aggregation Networks for Segmentation of Multi-Gigapixel Histology Images , 2017, ArXiv.