COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS

We present a framework for analyzing weak gravitational lensing survey data, including lensing and source-density observables, plus spectroscopic redshift calibration data. All two-point observables are predicted in terms of parameters of a perturbed Robertson-Walker metric, making the framework independent of the models for gravity, dark energy, or galaxy properties. For Gaussian fluctuations, the two-point model determines the survey likelihood function and allows Fisher matrix forecasting. The framework includes nuisance terms for the major systematic errors: shear measurement errors, magnification bias and redshift calibration errors, intrinsic galaxy alignments, and inaccurate theoretical predictions. We propose flexible parameterizations of the many nuisance parameters related to galaxy bias and intrinsic alignment. For the first time, we can integrate many different observables and systematic errors into a single analysis. As a first application of this framework, we demonstrate that: uncertainties in power-spectrum theory cause very minor degradation to cosmological information content; nearly all useful information (excepting baryon oscillations) is extracted with 3 bins per decade of angular scale; and the rate at which galaxy bias varies with redshift, substantially influences the strength of cosmological inference. The framework will permit careful study of the interplay between numerous observables, systematic errors, and spectroscopic calibration data for large weak lensing surveys.

[1]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[2]  Masahiro Takada,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[3]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[4]  Dark energy constraints from lensing-detected galaxy clusters , 2006, astro-ph/0605746.

[5]  Peter Schneider,et al.  Separating cosmic shear from intrinsic galaxy alignments: Correlation function tomography , 2002 .

[6]  Wayne Hu,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .

[7]  Bhuvnesh Jain,et al.  Cross-correlation tomography: measuring dark energy evolution with weak lensing. , 2003, Physical review letters.

[8]  Wayne Hu,et al.  Joint galaxy - lensing observables and the dark energy , 2004 .

[9]  U. Pen,et al.  Information Content in the Galaxy Angular Power Spectrum from the Sloan Digital Sky Survey and Its Implication on Weak-Lensing Analysis , 2008, 0807.1538.

[10]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[11]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[12]  Jun Zhang,et al.  Isolating Geometry in Weak-Lensing Measurements , 2003, astro-ph/0312348.

[13]  Cheng Li,et al.  Three Different Types of Galaxy Alignment within Dark Matter Halos , 2007, 0704.0674.

[14]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[15]  The distortion of distant galaxy images by large-scale structure , 1991 .

[16]  G. M. Bernstein,et al.  Dark Energy Constraints from Weak-Lensing Cross-Correlation Cosmography , 2003, astro-ph/0309332.

[17]  Power Spectrum Covariance of Weak Gravitational Lensing , 2000, astro-ph/0012087.

[18]  Hu Zhan,et al.  Cosmic tomographies: baryon acoustic oscillations and weak lensing , 2006 .

[19]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[20]  R. Metcalf,et al.  High-resolution imaging of the cosmic mass distribution from gravitational lensing of pre-galactic H i , 2006, astro-ph/0611862.

[21]  Weak lensing and CMB: Parameter forecasts including a running spectral index , 2003, astro-ph/0308446.

[22]  G. Bernstein,et al.  Size of Spectroscopic Calibration Samples for Cosmic Shear Photometric Redshifts , 2007, 0712.1562.

[23]  Shape Alignments of Satellite Galaxies , 2002, astro-ph/0205506.

[24]  M. Zaldarriaga,et al.  Lensing Reconstruction Using Redshifted 21 Centimeter Fluctuations , 2005, astro-ph/0511547.

[25]  L. Knox,et al.  Distance-redshift and growth-redshift relations as two windows on acceleration and gravitation: Dark energy or new gravity? , 2006 .

[26]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[27]  Alexander S. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004 .

[28]  J. Miralda-Escudé The correlation function of galaxy ellipticities produced by gravitational lensing , 1991 .

[29]  Masahiro Takada,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .

[30]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[31]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[32]  D. Spergel,et al.  Shear-selected Cluster Cosmology: Tomography and Optimal Filtering , 2004, astro-ph/0404349.

[33]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[34]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[35]  Christopher M. Hirata,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[36]  Constraining the evolution of dark energy with a combination of galaxy cluster observables , 2004, astro-ph/0406331.

[37]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[38]  Using Galaxy Two-Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift , 2006, astro-ph/0606098.

[39]  Ue-Li Pen Gravitational lensing of epoch-of-reionization gas , 2004 .

[40]  Adam Amara,et al.  Systematic bias in cosmic shear: extending the Fisher matrix , 2007, 0710.5171.

[41]  Metric tests for curvature from weak lensing and baryon acoustic oscillations , 2005, astro-ph/0503276.

[42]  Rachel Mandelbaum,et al.  Detection of large-scale intrinsic ellipticity—density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys , 2006 .

[43]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[44]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[45]  Analyzing weak lensing of the cosmic microwave background using the likelihood function , 2002, astro-ph/0209489.

[46]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[47]  Uros Seljak,et al.  Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes , 1996, astro-ph/9611077.

[48]  R. Croft,et al.  Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities , 2000, astro-ph/0005384.

[49]  B. Jain Magnification Effects as Measures of Large-Scale Structure , 2002, astro-ph/0208515.

[50]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.