The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study

Previous studies in nonhuman primates and cats have shown that the pulvinar receives input from various cortical and subcortical areas involved in vision. Although the contribution of the pulvinar to human vision remains to be established, anatomical tracer and electrophysiological animal studies on cortico-pulvinar circuits suggest an important role of this structure in visual spatial attention, visual integration, and higher-order visual processing. Because methodological constraints limit investigations of the human pulvinar's function, its role could, up to now, only be inferred from animal studies. In the present study, we used an innovative imaging technique, Diffusion Tensor Imaging (DTI) tractography, to determine cortical and subcortical connections of the human pulvinar. We were able to reconstruct pulvinar fiber tracts and compare variability across subjects in vivo. Here we demonstrate that the human pulvinar is interconnected with subcortical structures (superior colliculus, thalamus, and caudate nucleus) as well as with cortical regions (primary visual areas (area 17), secondary visual areas (area 18, 19), visual inferotemporal areas (area 20), posterior parietal association areas (area 7), frontal eye fields and prefrontal areas). These results are consistent with the connectivity reported in animal anatomical studies.

[1]  C. Casanova,et al.  Higher-order motion processing in the pulvinar. , 2001, Progress in brain research.

[2]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[3]  Heidi Johansen-Berg,et al.  Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography. , 2006, Brain : a journal of neurology.

[4]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[5]  L. Benevento,et al.  The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey , 1983, The Journal of comparative neurology.

[6]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[7]  J W McClurkin,et al.  The visual superior colliculus and pulvinar. , 1989, Reviews of oculomotor research.

[8]  J Faubert,et al.  Global motion integration in the cat's lateral posterior‐pulvinar complex , 2001, The European journal of neuroscience.

[9]  L. Chalupa,et al.  Substance P immunoreactivity identifies a projection from the cat's superior colliculus to the principal tectorecipient zone of the lateral posterior nucleus , 1991, The Journal of comparative neurology.

[10]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[11]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[12]  Albert Gjedde,et al.  Pattern–motion selectivity in the human pulvinar , 2005, NeuroImage.

[13]  S Shipp,et al.  Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: A dual model of retinal and cortical topographies , 2001, The Journal of comparative neurology.

[14]  M. Palestini The integrative sensorimotor function of the LP-pulvinar complex. , 1982, Archives italiennes de biologie.

[15]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[16]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[17]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[18]  M. Mallar Chakravarty,et al.  Anatomical and Electrophysiological Validation of an Atlas for Neurosurgical Planning , 2005, MICCAI.

[19]  D. Lindsley,et al.  Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. , 1972, Experimental neurology.

[20]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[21]  R D Freeman,et al.  Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. , 1989, Journal of neurophysiology.

[22]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[23]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[24]  D. Pandya,et al.  Corticothalamic connections of the posterior parietal cortex in the rhesus monkey , 1985, The Journal of comparative neurology.

[25]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[26]  C. Casanova,et al.  Chapter 5 Higher-order motion processing in the pulvinar , 2001 .

[27]  Leslie G. Ungerleider,et al.  Visual cortical projections and chemoarchitecture of macaque monkey pulvinar , 2000, The Journal of comparative neurology.

[28]  J. Trojanowski,et al.  Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. , 1974, Brain research.

[29]  R. Weller,et al.  Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys , 1993, Visual Neuroscience.

[30]  D. Collins,et al.  The creation of a brain atlas for image guided neurosurgery using serial histological data , 2003, NeuroImage.

[31]  Jon H Kaas,et al.  Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys , 2002, The Journal of comparative neurology.

[32]  Sabine Kastner,et al.  Visual attention as a multilevel selection process , 2004, Cognitive, affective & behavioral neuroscience.

[33]  D. Louis Collins,et al.  Tuning and Comparing Spatial Normalization Methods , 2003, MICCAI.

[34]  L. Benevento,et al.  Projections of the medial pulvinar to orbital cortex and frontal eye fields in the rhesus monkey (Macaca mulatta) , 1975, Experimental Neurology.

[35]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[36]  C. Casanova,et al.  [Pulvina-lateralis posterior nucleus complex of mammals and the visual function]. , 1991, Journal de physiologie.

[37]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[38]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.