Separable utility functions
暂无分享,去创建一个
[1] Nicholas C. Yannelis,et al. EQUILIBRIA IN BANACH LATTICES WITHOUT ORDERED PREFERENCES , 1986 .
[2] Graciela Chichilnisky. The cone condition, properness, and extremely desirable commodities , 1993 .
[3] Charalambos D. Aliprantis,et al. Principles of Real Analysis , 1981 .
[4] William R. Zame,et al. Competitive Equilibria in Production Economies with an Infinite-Dimensional Commodity Space , 1987 .
[5] T. Bewley. Existence of equilibria in economies with infinitely many commodities , 1972 .
[6] Alan J. Hoffman,et al. Systems of inequalities involving convex functions , 1957 .
[7] Charalambos D. Aliprantis,et al. The fundamental theorems of welfare economics without proper preferences , 1988 .
[8] Paulo Klinger Monteiro,et al. Equilibrium without uniform conditions , 1989 .
[9] P. Monteiro,et al. Generic non–existence of equilibria in finance models , 1991 .
[10] Paulo Klinger Monteiro,et al. The General Existence of Extended Price Equilibria with Infinitely Many Commodities , 1994 .
[11] William R. Zame,et al. Chapter 34 Equilibrium theory in infinite dimensional spaces , 1991 .
[12] Andreu Mas-Colell,et al. The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .
[13] G. Debreu. VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.
[14] Application of Functional Analysis to Models of Efficient Allocation of Economic Resources , 1980 .
[15] G. Debreu. The Coefficient of Resource Utilization , 1951 .
[16] K. Arrow. An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .
[17] Charalambos D. Aliprantis,et al. Edgeworth equilibria in production economies , 1987 .
[18] L. Jones. Special Problems Arising in the Study of Economies with Infinitely Many Commodities , 1986 .
[19] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[20] Cuong Le Van,et al. Complete Characterization of Yannelis-Zame and Chichilnisky-Kalman-Mas-Colell Properness Conditions on Preferences for Separable Concave Functions Defined in L[superscript p subscript +] and L[superscript p] , 1996 .
[21] Charalambos D. Aliprantis. Problems in equilibrium theory , 1996 .
[22] Paulo Klinger Monteiro,et al. General equilibrium with infinitely many goods: The case of seperable utilities , 1992 .