Separable utility functions

Abstract We present a necessary and sufficient condition for the norm properness of separable utility functions. The condition is illustrated with a variety of examples. The condition and the examples indicate that norm uniformly proper separable utility functions are much “closer” to linear utility functions than previously suspected. We also take this opportunity and present in a systematic and simplified manner the basic properties of separable utility functions that are scattered in a fragmented way throughout the literature.

[1]  Nicholas C. Yannelis,et al.  EQUILIBRIA IN BANACH LATTICES WITHOUT ORDERED PREFERENCES , 1986 .

[2]  Graciela Chichilnisky The cone condition, properness, and extremely desirable commodities , 1993 .

[3]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .

[4]  William R. Zame,et al.  Competitive Equilibria in Production Economies with an Infinite-Dimensional Commodity Space , 1987 .

[5]  T. Bewley Existence of equilibria in economies with infinitely many commodities , 1972 .

[6]  Alan J. Hoffman,et al.  Systems of inequalities involving convex functions , 1957 .

[7]  Charalambos D. Aliprantis,et al.  The fundamental theorems of welfare economics without proper preferences , 1988 .

[8]  Paulo Klinger Monteiro,et al.  Equilibrium without uniform conditions , 1989 .

[9]  P. Monteiro,et al.  Generic non–existence of equilibria in finance models , 1991 .

[10]  Paulo Klinger Monteiro,et al.  The General Existence of Extended Price Equilibria with Infinitely Many Commodities , 1994 .

[11]  William R. Zame,et al.  Chapter 34 Equilibrium theory in infinite dimensional spaces , 1991 .

[12]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[13]  G. Debreu VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Application of Functional Analysis to Models of Efficient Allocation of Economic Resources , 1980 .

[15]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[16]  K. Arrow An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .

[17]  Charalambos D. Aliprantis,et al.  Edgeworth equilibria in production economies , 1987 .

[18]  L. Jones Special Problems Arising in the Study of Economies with Infinitely Many Commodities , 1986 .

[19]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[20]  Cuong Le Van,et al.  Complete Characterization of Yannelis-Zame and Chichilnisky-Kalman-Mas-Colell Properness Conditions on Preferences for Separable Concave Functions Defined in L[superscript p subscript +] and L[superscript p] , 1996 .

[21]  Charalambos D. Aliprantis Problems in equilibrium theory , 1996 .

[22]  Paulo Klinger Monteiro,et al.  General equilibrium with infinitely many goods: The case of seperable utilities , 1992 .