Preconditioned iterative methods for inhomogeneous acoustic scattering applications
暂无分享,去创建一个
[1] M. Gunzburger,et al. Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .
[2] Zhi-Hao Cao,et al. A note on the convergence behavior of GMRES , 1997 .
[3] J. Sherman,et al. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .
[4] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[5] R. F. Rinehart. The derivative of a matric function , 1956 .
[6] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[7] A. Pietsch. Eigenvalues and S-Numbers , 1987 .
[8] P. Anselone,et al. Singularity subtraction in the numerical solution of integral equations , 1981, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[9] Ilse C. F. Ipsen,et al. Convergence Estimates for Solution of Integral Equations with GMRES , 1996 .
[10] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[11] Vladimir Rokhlin,et al. High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .
[12] S. Ghanemi,et al. A Domain Decomposition Method for Helmholtz Scattering Problems , 1997 .
[13] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[14] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[15] Ronald B. Morgan,et al. Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..
[16] Jan Zítko,et al. Convergence conditions for a restarted GMRES method augmented with eigenspaces , 2005, Numer. Linear Algebra Appl..
[17] L. Trefethen. Approximation theory and numerical linear algebra , 1990 .
[18] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[19] Alain Largillier,et al. Spectral Computations for Bounded Operators , 2001 .
[20] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[21] Tosio Kato. Perturbation theory for linear operators , 1966 .
[22] Thomas J. R. Hughes,et al. Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .
[23] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[24] R. Kress,et al. Integral equation methods in scattering theory , 1983 .
[25] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[26] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[27] A. Kirsch,et al. Convergence analysis of a coupled finite element and spectral method in acoustic scattering , 1990 .
[28] J. Zhang,et al. An Approximate Method for Scattering by Thin Structures , 2005, SIAM J. Appl. Math..
[29] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .
[30] E. B. Davies. Approximate Diagonalization , 2007, SIAM J. Matrix Anal. Appl..
[31] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering , 1998 .
[32] Oscar P. Bruno,et al. A fast, higher-order solver for scattering by penetrable bodies in three dimensions , 2005 .
[33] Lothar Reichel,et al. The Arnoldi Process and GMRES for Nearly Symmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[34] I. Moret. A Note on the Superlinear Convergence of GMRES , 1997 .
[35] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[36] F. V. Atkinson. On Sommerfeld's "Radiation Condition" , 1949 .
[37] Yu Chen,et al. High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity in 2-D , 2002 .
[38] L. Trefethen,et al. Numerical linear algebra , 1997 .
[39] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[40] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[41] P. Anselone,et al. Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .
[42] Reinhard Nabben,et al. Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[43] R. Winther. Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .
[44] Kevin Burrage,et al. On the performance of various adaptive preconditioned GMRES strategies , 1998, Numer. Linear Algebra Appl..
[45] John Rossi,et al. Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..
[46] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[47] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[48] Shanhui Fan,et al. Guided and defect modes in periodic dielectric waveguides , 1995 .
[49] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[50] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[51] Thomas Hagstrom,et al. A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .
[52] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[53] Peter Monk,et al. An analysis of the coupling of finite-element and Nyström methods in acoustic scattering , 1994 .
[54] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[55] Steven G. Johnson,et al. Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity , 1998 .
[56] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[57] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[58] O. Nevanlinna. Convergence of Iterations for Linear Equations , 1993 .
[59] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[60] Oscar P. Bruno,et al. Higher-Order Fourier Approximation in Scattering by Two-Dimensional, Inhomogeneous Media , 2004, SIAM J. Numer. Anal..
[61] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[62] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[63] Feng KASOc,et al. Finite Element Method and Natural Boundary Reduction , 2010 .
[64] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[65] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[66] Takashi Nodera,et al. The DEFLATED-GMRES(m, k) method with switching the restart frequency dynamically , 2000, Numer. Linear Algebra Appl..
[67] Tobin A. Driscoll,et al. From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..
[68] Danny C. Sorensen,et al. Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..
[69] M. Embree. How Descriptive are GMRES Convergence Bounds? , 1999, ArXiv.
[70] Zhongxiao Jia,et al. The Convergence of Generalized Lanczos Methods for Large Unsymmetric Eigenproblems , 1995, SIAM J. Matrix Anal. Appl..
[71] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[72] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[73] Vladimir Rokhlin,et al. On the inverse scattering problem for the Helmholtz equation in one dimension , 1992 .
[74] Axel Scherer,et al. Optimization of the Q factor in photonic crystal microcavities , 2002 .