Preconditioned iterative methods for inhomogeneous acoustic scattering applications

Preconditioned Iterative Methods for Inhomogeneous Acoustic Scattering Applications by Josef Sifuentes This thesis develops and analyzes efficient iterative methods for solving discretizations of the Lippmann–Schwinger integral equation for inhomogeneous acoustic scattering. Analysis and numerical illustrations of the spectral properties of the scattering problem demonstrate that a significant portion of the spectrum is approximated well on coarse grids. To exploit this, I develop a novel restarted GMRES method with adaptive deflation preconditioning based on spectral approximations on multiple grids. Much of the literature in this field is based on exact deflation, which is not feasible for most practical computations. This thesis provides an analytical framework for general approximate deflation methods and suggests a way to rigorously study a host of inexactly-applied preconditioners. Approximate deflation algorithms are implemented for scattering through thin inhomogeneities in photonic band gap problems. I also develop a short term recurrence for solving the one dimensional version of the problem that exploits the observation that the integral operator is a low rank perturbation of a self-adjoint operator. This method is based on strategies for solving Schur complement problems, and provides an alternative to a recent short term recurrence algorithm for matrices with such structure that we show to be numerically unstable for this application. The restarted GMRES method with adaptive deflation preconditioning over multiple grids, as well as the short term recurrence method for operators with low rank skew-adjoint parts, are very effective for reducing both the computational time and computer memory required to solve acoustic scattering problems. Furthermore, the methods are sufficiently general to be applicable to a wide class of problems.

[1]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[2]  Zhi-Hao Cao,et al.  A note on the convergence behavior of GMRES , 1997 .

[3]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  R. F. Rinehart The derivative of a matric function , 1956 .

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[8]  P. Anselone,et al.  Singularity subtraction in the numerical solution of integral equations , 1981, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[9]  Ilse C. F. Ipsen,et al.  Convergence Estimates for Solution of Integral Equations with GMRES , 1996 .

[10]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[11]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[12]  S. Ghanemi,et al.  A Domain Decomposition Method for Helmholtz Scattering Problems , 1997 .

[13]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[14]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[15]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[16]  Jan Zítko,et al.  Convergence conditions for a restarted GMRES method augmented with eigenspaces , 2005, Numer. Linear Algebra Appl..

[17]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[18]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[19]  Alain Largillier,et al.  Spectral Computations for Bounded Operators , 2001 .

[20]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[21]  Tosio Kato Perturbation theory for linear operators , 1966 .

[22]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[23]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[24]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[25]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[26]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[27]  A. Kirsch,et al.  Convergence analysis of a coupled finite element and spectral method in acoustic scattering , 1990 .

[28]  J. Zhang,et al.  An Approximate Method for Scattering by Thin Structures , 2005, SIAM J. Appl. Math..

[29]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[30]  E. B. Davies Approximate Diagonalization , 2007, SIAM J. Matrix Anal. Appl..

[31]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[32]  Oscar P. Bruno,et al.  A fast, higher-order solver for scattering by penetrable bodies in three dimensions , 2005 .

[33]  Lothar Reichel,et al.  The Arnoldi Process and GMRES for Nearly Symmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[34]  I. Moret A Note on the Superlinear Convergence of GMRES , 1997 .

[35]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[36]  F. V. Atkinson On Sommerfeld's "Radiation Condition" , 1949 .

[37]  Yu Chen,et al.  High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity in 2-D , 2002 .

[38]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[39]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[40]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[41]  P. Anselone,et al.  Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .

[42]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[43]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[44]  Kevin Burrage,et al.  On the performance of various adaptive preconditioned GMRES strategies , 1998, Numer. Linear Algebra Appl..

[45]  John Rossi,et al.  Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..

[46]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[47]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[48]  Shanhui Fan,et al.  Guided and defect modes in periodic dielectric waveguides , 1995 .

[49]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[50]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[51]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[52]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[53]  Peter Monk,et al.  An analysis of the coupling of finite-element and Nyström methods in acoustic scattering , 1994 .

[54]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[55]  Steven G. Johnson,et al.  Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity , 1998 .

[56]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[57]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[58]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[59]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[60]  Oscar P. Bruno,et al.  Higher-Order Fourier Approximation in Scattering by Two-Dimensional, Inhomogeneous Media , 2004, SIAM J. Numer. Anal..

[61]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[62]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[63]  Feng KASOc,et al.  Finite Element Method and Natural Boundary Reduction , 2010 .

[64]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[65]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[66]  Takashi Nodera,et al.  The DEFLATED-GMRES(m, k) method with switching the restart frequency dynamically , 2000, Numer. Linear Algebra Appl..

[67]  Tobin A. Driscoll,et al.  From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..

[68]  Danny C. Sorensen,et al.  Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..

[69]  M. Embree How Descriptive are GMRES Convergence Bounds? , 1999, ArXiv.

[70]  Zhongxiao Jia,et al.  The Convergence of Generalized Lanczos Methods for Large Unsymmetric Eigenproblems , 1995, SIAM J. Matrix Anal. Appl..

[71]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[72]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[73]  Vladimir Rokhlin,et al.  On the inverse scattering problem for the Helmholtz equation in one dimension , 1992 .

[74]  Axel Scherer,et al.  Optimization of the Q factor in photonic crystal microcavities , 2002 .