Coexistence of two distinct G-quadruplex conformations in the hTERT promoter.

The catalytic subunit of human telomerase, hTERT, actively elongates the 3' end of the telomere in most cancer cells. The hTERT promoter, which contains many guanine-rich stretches on the same DNA strand, exhibits an exceptional potential for G-quadruplex formation. Here we show that one particular G-rich sequence in this region coexists in two G-quadruplex conformations in potassium solution: a (3 + 1) and a parallel-stranded G-quadruplexes. We present the NMR solution structures of both conformations, each comprising several robust structural elements, among which include the (3 + 1) and all-parallel G-tetrad cores, single-residue double-chain-reversal loops, and a capping A.T base pair. A combination of NMR and CD techniques, complemented with sequence modifications and variations of experimental condition, allowed us to better understand the coexistence of the two G-quadruplex conformations in equilibrium and how different structural elements conspire to favor a particular form.

[1]  Dinshaw J. Patel,et al.  Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. , 2006, Journal of the American Chemical Society.

[2]  Yong Xue,et al.  Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition. , 2007, Journal of the American Chemical Society.

[3]  K. Shin‐ya,et al.  The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. , 2006, Cancer research.

[4]  S. Balasubramanian,et al.  A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. , 2009, Journal of the American Chemical Society.

[5]  Yan Xu,et al.  The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. , 2006, Bioorganic & medicinal chemistry.

[6]  Dinshaw J. Patel,et al.  Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics , 2007, Nucleic acids research.

[7]  G. Morin The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats , 1989, Cell.

[8]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[9]  P. Pečinka,et al.  DNA tetraplex formation in the control region of c-myc. , 1998, Nucleic acids research.

[10]  M. Guéron,et al.  Investigation of unusual DNA motifs. , 2001, Methods in enzymology.

[11]  D. Patel,et al.  Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. , 1993, Structure.

[12]  J. Mergny,et al.  Sequence effects in single-base loops for quadruplexes. , 2008, Biochimie.

[13]  A. Phan,et al.  Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution: effect of loop length and sequence on the folding topology. , 2009, Journal of the American Chemical Society.

[14]  D. Gray,et al.  Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. , 2008, Chirality.

[15]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[16]  Jean-Louis Mergny,et al.  G-quadruplex DNA: A target for drug design , 1998, Nature Medicine.

[17]  A. Phan,et al.  Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution† , 2007, Nucleic acids research.

[18]  S. Balasubramanian,et al.  G-quadruplex nucleic acids as therapeutic targets. , 2009, Current opinion in chemical biology.

[19]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[20]  J. Fletcher,et al.  Targeting human gastrointestinal stromal tumor cells with a quadruplex-binding small molecule. , 2009, Journal of medicinal chemistry.

[21]  J. Mergny,et al.  Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. , 2004, Nucleic acids research.

[22]  Sarah W. Burge,et al.  Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. , 2007, Journal of the American Chemical Society.

[23]  Haiyong Han,et al.  The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. , 2002, Molecular cancer therapeutics.

[24]  A. Phan,et al.  A site-specific low-enrichment (15)N,(13)C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. , 2002, Journal of the American Chemical Society.

[25]  Yan Xu,et al.  Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb) , 2006, Nucleic acids research.

[26]  A. Phan,et al.  Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter , 2005, Nature chemical biology.

[27]  D. Corey,et al.  Inhibition of human telomerase activity by peptide nucleic acids , 1996, Nature Biotechnology.

[28]  E. Blackburn,et al.  The effects of nucleoside analogs on telomerase and telomeres in Tetrahymena. , 1994, Nucleic Acids Research.

[29]  Jean-Louis Mergny,et al.  Targeting telomeres and telomerase. , 2008, Biochimie.

[30]  V A Zakian,et al.  Telomeres: Beginning to Understand the End , 1995, Science.

[31]  Roger A. Jones,et al.  Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution , 2006, Nucleic Acids Research.

[32]  Sarah W. Burge,et al.  Quadruplex DNA: sequence, topology and structure , 2006, Nucleic acids research.

[33]  Jeffery T. Davis G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. , 2004, Angewandte Chemie.

[34]  Charles R. Cantor,et al.  Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleolides , 1970 .

[35]  A. Phan,et al.  Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution , 2006, Nucleic acids research.

[36]  Roger A. Jones,et al.  NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region , 2006, Nucleic acids research.

[37]  J. Mergny,et al.  G‐Quadruplex Formation Interferes with P1 Helix Formation in the RNA Component of Telomerase hTERC , 2008, Chembiochem : a European journal of chemical biology.

[38]  L. Hurley,et al.  Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. , 2009, Journal of the American Chemical Society.

[39]  A. Phan Human telomeric G‐quadruplex: structures of DNA and RNA sequences , 2010, The FEBS journal.

[40]  M. Vorlíčková,et al.  Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions , 2009, Nucleic acids research.

[41]  J. Steitz,et al.  Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. , 1992, The EMBO journal.

[42]  L. S. Cram,et al.  A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Roger A. Jones,et al.  Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. , 2005, Biochemistry.

[44]  C. Harley,et al.  Telomeres shorten during ageing of human fibroblasts , 1990, Nature.

[45]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[46]  A. Phan,et al.  Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. , 2003, Journal of the American Chemical Society.

[47]  A. Phan,et al.  Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G·C·G·C tetrad , 2009, Nucleic acids research.

[48]  J. Chaires,et al.  Thermal difference spectra: a specific signature for nucleic acid structures , 2005, Nucleic acids research.

[49]  J. Feigon,et al.  Strand orientation in the DNA quadruplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. , 1993, Biochemistry.

[50]  N. Sugimoto,et al.  Molecular crowding regulates the structural switch of the DNA G-quadruplex. , 2002, Biochemistry.

[51]  Virginia A. Zakian,et al.  Loss of a yeast telomere: Arrest, recovery, and chromosome loss , 1993, Cell.

[52]  D. Bearss,et al.  Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Danzhou Yang,et al.  Polymorphism of human telomeric quadruplex structures. , 2008, Biochimie.

[54]  T. Simonsson,et al.  G-Quadruplex DNA Structures Variations on a Theme , 2001, Biological chemistry.

[55]  E. Blackburn,et al.  A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis , 1989, Nature.

[56]  E. Leproust,et al.  An efficient and economic site-specific deuteration strategy for NMR studies of homologous oligonucleotide repeat sequences. , 1997, Nucleic acids research.

[57]  Stephen Neidle,et al.  Putative DNA quadruplex formation within the human c-kit oncogene. , 2005, Journal of the American Chemical Society.

[58]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[59]  David M. Prescott,et al.  Inhibition of telomerase by G-quartet DMA structures , 1991, Nature.

[60]  A. Phan Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA , 2000, Journal of biomolecular NMR.

[61]  A. Phan,et al.  Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. , 2004, Journal of the American Chemical Society.

[62]  A. Lane,et al.  Stability and kinetics of G-quadruplex structures , 2008, Nucleic acids research.

[63]  Tom Brown,et al.  Sequence effects of single base loops in intramolecular quadruplex DNA , 2007, FEBS letters.

[64]  Stephen Neidle,et al.  Loop-length-dependent folding of G-quadruplexes. , 2004, Journal of the American Chemical Society.

[65]  N. Maizels,et al.  Gene function correlates with potential for G4 DNA formation in the human genome , 2006, Nucleic acids research.

[66]  A. Phan,et al.  Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. , 2009, Journal of the American Chemical Society.

[67]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[68]  Jean-Louis Mergny,et al.  Following G‐quartet formation by UV‐spectroscopy , 1998, FEBS letters.

[69]  D. Patel,et al.  Solution structure of the Tetrahymena telomeric repeat d(T2G4)4 G-tetraplex. , 1994, Structure.

[70]  S. Cogoi,et al.  G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription , 2006, Nucleic acids research.

[71]  S. Neidle,et al.  Inhibition of human telomerase by a G-quadruplex-interactive compound. , 1997, Journal of medicinal chemistry.