Understudied proteins: opportunities and challenges for functional proteomics

[1]  T. Ideker,et al.  An open invitation to the Understudied Proteins Initiative , 2022, Nature Biotechnology.

[2]  Edward L. Huttlin,et al.  A multi-scale map of cell structure fusing protein images and interactions , 2021, Nature.

[3]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[4]  James A. Evans,et al.  Slowed canonical progress in large fields of science , 2018, Proceedings of the National Academy of Sciences.

[5]  I. Fournier,et al.  Shedding Light on the Ghost Proteome. , 2020, Trends in biochemical sciences.

[6]  Rebekah L. Gundry,et al.  A high-stringency blueprint of the human proteome , 2020, Nature Communications.

[7]  E. Marcotte,et al.  hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies , 2020, bioRxiv.

[8]  Devin P. Sullivan,et al.  Spatial Characterization of the Human Centrosome Proteome Opens Up New Horizons for a Small but Versatile Organelle , 2020, Proteomics.

[9]  Maximilian T. Strauss,et al.  The proteome landscape of the kingdoms of life , 2020, Nature.

[10]  Oliver M Crook,et al.  Moving Profiling Spatial Proteomics Beyond Discrete Classification , 2020, Proteomics.

[11]  Christoph B. Messner,et al.  Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection , 2020, Cell Systems.

[12]  Juri Rappsilber,et al.  Reliable identification of protein-protein interactions by crosslinking mass spectrometry , 2020, Nature Communications.

[13]  M. Savitski,et al.  Thermal proteome profiling for interrogating protein interactions , 2020, Molecular systems biology.

[14]  Patrick Aloy,et al.  A reference map of the human binary protein interactome , 2020, Nature.

[15]  Shana O. Kelley,et al.  Single-cell analysis targeting the proteome , 2020, Nature Reviews Chemistry.

[16]  Winston Timp,et al.  Beyond mass spectrometry, the next step in proteomics , 2020, Science Advances.

[17]  Mari L. Salmi,et al.  A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies , 2019, Cell.

[18]  Xiuyun Sun,et al.  PROTACs: great opportunities for academia and industry. , 2019, Signal transduction and targeted therapy.

[19]  J. Rappsilber,et al.  In Situ Structural Restraints from Cross-Linking Mass Spectrometry in Human Mitochondria , 2019, Journal of proteome research.

[20]  M. Schrader,et al.  Co-regulation map of the human proteome enables identification of protein functions , 2019, Nature Biotechnology.

[21]  S. Lawo,et al.  CRISPR: A Screener’s Guide , 2019, SLAS discovery : advancing life sciences R & D.

[22]  A. Olry,et al.  Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database , 2019, European Journal of Human Genetics.

[23]  Brian Raught,et al.  Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. , 2019, Current opinion in chemical biology.

[24]  Laura Trinkle-Mulcahy,et al.  Recent advances in proximity-based labeling methods for interactome mapping , 2019, F1000Research.

[25]  Emma Lundberg,et al.  Spatial proteomics: a powerful discovery tool for cell biology , 2019, Nature Reviews Molecular Cell Biology.

[26]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[27]  Jürg Bähler,et al.  Hidden in plain sight: what remains to be discovered in the eukaryotic proteome? , 2018, bioRxiv.

[28]  L. Jensen,et al.  Darkness in the Human Gene and Protein Function Space: Widely Modest or Absent Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 2000 , 2018, Proteomics.

[29]  J. Rappsilber,et al.  Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology , 2018, Nature Structural & Molecular Biology.

[30]  G. Omenn,et al.  Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. , 2018, Journal of proteome research.

[31]  I. Dunham Human genes: Time to follow the roads less traveled? , 2018, PLoS biology.

[32]  Luís A. Nunes Amaral,et al.  Large-scale investigation of the reasons why potentially important genes are ignored , 2018, PLoS biology.

[33]  Christoph B. Messner,et al.  Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts , 2018, Cell systems.

[34]  Kathryn S. Lilley,et al.  Assessing sub-cellular resolution in spatial proteomics experiments , 2018, bioRxiv.

[35]  Wei Zhang,et al.  Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. , 2018, Cell systems.

[36]  Anton Simeonov,et al.  Unexplored therapeutic opportunities in the human genome , 2018, Nature Reviews Drug Discovery.

[37]  Lloyd M. Smith,et al.  Proteoforms as the next proteomics currency , 2018, Science.

[38]  Lloyd M. Smith,et al.  How many human proteoforms are there? , 2018, Nature chemical biology.

[39]  J. Lüders,et al.  Microtubule-Organizing Centers: Towards a Minimal Parts List. , 2017, Trends in cell biology.

[40]  Lennart Martens,et al.  The online Tabloid Proteome: an annotated database of protein associations , 2017, Nucleic Acids Res..

[41]  C. Jeffery Protein moonlighting: what is it, and why is it important? , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Richard Bonneau,et al.  deepNF: deep network fusion for protein function prediction , 2017, bioRxiv.

[43]  E. Dolgin The most popular genes in the human genome. , 2017 .

[44]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[45]  Simone Sidoli,et al.  Middle-down proteomics: a still unexploited resource for chromatin biology , 2017, Expert review of proteomics.

[46]  Winston Haynes,et al.  Gene annotation bias impedes biomedical research , 2017, Scientific Reports.

[47]  Gautier Koscielny,et al.  Open Targets: a platform for therapeutic target identification and validation , 2016, Nucleic Acids Res..

[48]  J. Rappsilber,et al.  Compositional Dynamics: Defining the Fuzzy Cell , 2016, Trends in cell biology.

[49]  A. Zelezniak,et al.  Functional Metabolomics Describes the Yeast Biosynthetic Regulome , 2016, Cell.

[50]  A. H. Smits,et al.  Characterizing Protein-Protein Interactions Using Mass Spectrometry: Challenges and Opportunities. , 2016, Trends in biotechnology.

[51]  Adam P. Rosebrock,et al.  A global genetic interaction network maps a wiring diagram of cellular function , 2016, Science.

[52]  N. Kelleher,et al.  Progress in Top-Down Proteomics and the Analysis of Proteoforms. , 2016, Annual review of analytical chemistry.

[53]  Evan G. Williams,et al.  Systems proteomics of liver mitochondria function , 2016, Science.

[54]  J. Rappsilber,et al.  Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data , 2016, Proteomics.

[55]  D. Ostatníková,et al.  The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis , 2016, Neural plasticity.

[56]  G. Superti-Furga,et al.  Gene essentiality and synthetic lethality in haploid human cells , 2015, Science.

[57]  Jacob G Foster,et al.  Choosing experiments to accelerate collective discovery , 2015, Proceedings of the National Academy of Sciences.

[58]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[59]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[60]  Matthias Selbach,et al.  Quantitative affinity purification mass spectrometry: a versatile technology to study protein–protein interactions , 2015, Front. Genet..

[61]  G. Warren In praise of other model organisms , 2015, The Journal of cell biology.

[62]  Michael F. Wangler,et al.  Fruit Flies in Biomedical Research , 2015, Genetics.

[63]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[64]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[65]  Evan G. Williams,et al.  Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population , 2014, Cell.

[66]  J. Steen,et al.  Co‐regulation proteomics reveals substrates and mechanisms of APC/C‐dependent degradation , 2014, The EMBO journal.

[67]  Juri Rappsilber,et al.  Proteomics of a fuzzy organelle: interphase chromatin , 2014, The EMBO journal.

[68]  M. Fenner What Can Article-Level Metrics Do for You? , 2013, PLoS biology.

[69]  Dan Xie,et al.  Variation and Genetic Control of Protein Abundance in Humans , 2013, Nature.

[70]  Daniel W. A. Buchan,et al.  A large-scale evaluation of computational protein function prediction , 2013, Nature Methods.

[71]  Julian Blagg,et al.  A public-private partnership to unlock the untargeted kinome. , 2013, Nature chemical biology.

[72]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[73]  M. Lam,et al.  Strategies for membrane interaction proteomics: No mass spectrometry required , 2012, Proteomics.

[74]  Wade H. Dunham,et al.  Affinity‐purification coupled to mass spectrometry: Basic principles and strategies , 2012, Proteomics.

[75]  Heidi J. Imker,et al.  The Enzyme Function Initiative. , 2011, Biochemistry.

[76]  S. Oliver,et al.  An integrated approach to characterize genetic interaction networks in yeast metabolism , 2011, Nature Genetics.

[77]  Gary D Bader,et al.  The human genome and drug discovery after a decade. Roads (still) not taken , 2011, 1102.0448.

[78]  D. Glass,et al.  A critique of the hypothesis, and a defense of the question, as a framework for experimentation. , 2010, Clinical chemistry.

[79]  S. Knapp,et al.  The (un)targeted cancer kinome. , 2010, Nature chemical biology.

[80]  Ullrich Köthe,et al.  Computational protein profile similarity screening for quantitative mass spectrometry experiments , 2010, Bioinform..

[81]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[82]  William Stafford Noble,et al.  Posterior error probabilities and false discovery rates: two sides of the same coin. , 2008, Journal of proteome research.

[83]  Alexey I Nesvizhskii,et al.  Analysis and validation of proteomic data generated by tandem mass spectrometry , 2007, Nature Methods.

[84]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[85]  F. Bacon,et al.  The Novum Organon, or a True Guide to the Interpretation of Nature , 2005 .

[86]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[87]  Alessandro Vespignani,et al.  Global protein function prediction from protein-protein interaction networks , 2003, Nature Biotechnology.

[88]  D. Kell,et al.  High-throughput classification of yeast mutants for functional genomics using metabolic footprinting , 2003, Nature Biotechnology.

[89]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[90]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.