Use of surface complexation models in soil chemical systems

Publisher Summary This chapter presents five common surface complexation models of the mineral–solution interface and their use in describing soil chemical systems. Common model characteristics and adjustable parameters are discussed. For each model, surface species, chemical reactions, equilibrium constant expressions, and surface activity coefficients are described. Applications of the model to ion adsorption on soil minerals and soils are presented. Incorporation of surface complexation models into computer codes is also discussed. All surface complexation models are based on a balance of surface charge expression. They contain at least one coulombic correction factor to account for the effect of surface charge on surface complexation and explicitly define equilibrium constant expressions for surface complexes. They contain mass balance equations for each type of surface site and charge balance equations for each surface plane of adsorption. Thus, all models contain adjustable parameters—the equilibrium constants, the capacitance density for the i th surface plane, and the total number of reactive surface hydroxyl groups.

[1]  Werner Stumm,et al.  Specific adsorption of cations on hydrous γ-Al2O3 , 1973 .

[2]  W. Stumm,et al.  Characterization of Surface Chemical Properties of Oxides in Natural Waters: The Role of Specific Adsorption in Determining the Surface Charge , 1980 .

[3]  R. L. Schmidt,et al.  Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. , 1987, Environmental science & technology.

[4]  B. Whelan,et al.  Testing a mechanistic model. VIII. The effects of time and temperature of incubation on the sorption and subsequent desorption of selenite and selenate by a soil , 1989 .

[5]  N. Barrow Testing a mechanistic model. X. The effect of pH and electrolyte concentration on borate sorption by a soil , 1989 .

[6]  W. Stumm,et al.  Interaction of Pb2+ with hydrous γ-Al2O3☆ , 1976 .

[7]  M. Benjamin,et al.  Effects of Strong Binding of Anionic Adsorbates on Adsorption of Trace Metals on Amorphous Iron Oxyhydroxide , 1981 .

[8]  Chin-Fu Tsang,et al.  A summary of subsurface hydrological and hydrochemical models , 1991 .

[9]  C. H. Rochester,et al.  Infrared study of surface hydroxyl groups on goethite , 1979 .

[10]  G. Bolt,et al.  Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I: Model description and evaluation of intrinsic reaction constants , 1989 .

[11]  A. Regazzoni,et al.  The influence of temperature on the interface magnetite-aqueous electrolyte solution , 1984 .

[12]  J. Leckie,et al.  Computer simulation of the conductometric and potentiometric titrations of the surface groups on ionizable latexes , 1978 .

[13]  M. Benjamin,et al.  Modeling adsorption in aluminum-iron binary oxide suspensions , 1990 .

[14]  L. Madrid,et al.  Description of titration curves of mixed materials with variable and permanent surface charge by amathematical model. 1. Theory. 2. Application to mixtures of lepidocrocite and montmorillonite , 1988 .

[15]  M. Bruggenwert,et al.  Proton adsorption mechanism at the gibbsite and aluminium oxide solid/solution interface. , 1987 .

[16]  S. Goldberg Chemical modeling of anion competition on goethite using the constant capacitance model , 1985 .

[17]  M. McBride,et al.  Interactions at the soil colloid-soil solution interface. , 1991 .

[18]  J. Ferguson,et al.  Arsenate adsorption on amorphous aluminum hydroxide , 1976 .

[19]  B. V. Raij,et al.  Electrochemical Properties of Some Oxisols and Alfisols of the Tropics1 , 1972 .

[20]  J. Leckie,et al.  Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data , 1991 .

[21]  A. Jennings,et al.  Multicomponent equilibrium chemistry in groundwater quality models , 1982 .

[22]  E. Matijević,et al.  Adsorption of Co2+ ions on spherical magnetite particles , 1983 .

[23]  P. Tewari Adsorption From Aqueous Solutions , 1981 .

[24]  J. Westall,et al.  A comparison of electrostatic models for the oxide/solution interface , 1980 .

[25]  C. Miranda,et al.  Molybdate Adsorption on Kaolinite, Montmorillonite, and Illite: Constant Capacitance Modeling , 1989 .

[26]  P. Sollins,et al.  The study of soil chemistry through quasi-steady-state models: II. Acidity of soil solution , 1990 .

[27]  J. Quirk,et al.  Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface , 1980 .

[28]  G. Sposito,et al.  Chemical models of inorganic pollutants in soils , 1985 .

[29]  James W. Murray,et al.  The influence of the major ions of seawater on the adsorption of simple organic acids by goethite , 1987 .

[30]  W. Stumm,et al.  The surface complexation of organic acids on hydrous γ-Al2O3 , 1980 .

[31]  J. Westall Chemical Equilibrium Including Adsorption on Charged Surfaces , 1980 .

[32]  Y. Takashima,et al.  Effects of metal ions and organic ligands on the adsorption of Co(II) onto silicagel , 1990 .

[33]  J. Lyklema,et al.  Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum , 1980 .

[34]  J. Quirk,et al.  Describing the adsorption of copper, zinc and lead on a variable charge mineral surface , 1981 .

[35]  A. Regazzoni,et al.  Boric acid adsorption on magnetite and zirconium dioxide , 1984 .

[36]  W. Smit,et al.  Zeta-potential and radiotracer adsorption measurements on EFG α-Al2O3 single crystals in NaBr solutions , 1980 .

[37]  S. Milonjić Determination of surface ionization and complexation constants at colloidal silica/electrolyte interface , 1987 .

[38]  Mark M. Benjamin,et al.  Adsorption/coprecipitation of trace elements from water with iron oxyhydroxide , 1980 .

[39]  Y. Takashima,et al.  Adsorption of Fe(III), Co(II) and Zn(II) onto particulates in fresh waters on the basis of the surface complexation model I. Stabilities of metal species adsorbed on particulates , 1990 .

[40]  W. Stumm,et al.  The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface , 1981 .

[41]  P. D. Bruyn,et al.  Adsorption at the rutile-solution interface , 1968 .

[42]  C. E. Cowan,et al.  Adsorption of Chromate by Subsurface Soil Horizons , 1989 .

[43]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[44]  G. A. Parks,et al.  Characterization of Aqueous Colloids by Their Electrical Double-Layer and Intrinsic Surface Chemical Properties , 1982 .

[45]  C. E. Cowan,et al.  Cadmium adsorption on iron oxides in the presence of alkaline-earth elements , 1991 .

[46]  G. Sposito,et al.  On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: A review , 1985 .

[47]  P. Schindler Co-adsorption of metal ions and organic ligands; formation of ternary surface complexes , 1990 .

[48]  L. Madrid,et al.  Description of titration curves of mixed materials with variable and permanent charge by a mathematical model. 3. Influence of the nature of the permanent charge mineral , 1989 .

[49]  Werner Stumm,et al.  Specific Chemical Interaction Affecting the Stability of Dispersed Systems , 1970 .

[50]  L. Balistrieri,et al.  The surface chemistry of goethite (alpha FeOOH) in major ion seawater , 1981 .

[51]  V. S. Tripathi,et al.  HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems , 1990 .

[52]  L. Balistrieri,et al.  The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater , 1982 .

[53]  M. Sohn,et al.  Aquatic surface chemistry: Edited by Werner Stumm. Wiley, New York. 1987. $69.95 (ISBN 0471822951) , 1988 .

[54]  R. Mckenzie,et al.  The Surface Charge on Manganese Dioxides , 1981 .

[55]  G. Bolt,et al.  Metal ion adsorption on heterogeneous surfaces; Adsorption models. , 1987 .

[56]  R. Astumian,et al.  Kinetics of the adsorption-desorption of phosphate on the .gamma.-alumina surface using the pressure-jump technique , 1983 .

[57]  L. Bell,et al.  Adsorption and desorption of boron by goethite , 1987 .

[58]  L. Balistrieri,et al.  The surface chemistry of δMnO2 in major ion sea water , 1982 .

[59]  B. Whelan,et al.  Testing a mechanistic model. VII. The effects of pH and of electrolyte on the reaction of selenite and selenate with a soil , 1989 .

[60]  Robert W. Taylor,et al.  A phosphorus-31 solid-state nuclear magnetic resonance study of phosphate adsorption at the boehmite/aqueous solution interface , 1991 .

[61]  S. Goldberg,et al.  Anion sorption on a calcareous, montmorillonitic soil-arsenic , 1988 .

[62]  J. Quirk,et al.  THE SPECIFIC ADSORPTION OF DIVALENT Cd, Co, Cu, Pb, AND Zn ON GOETHITE , 1976 .

[63]  D. Fornasiero,et al.  ELECTROCHEMISTRY OF THE BOEHMITE-WATER INTERFACE , 1990 .

[64]  P. Sollins,et al.  The study of soil chemistry through quasi-steady-state models: I. Mathematical definition of model , 1989 .

[65]  K. Hunter,et al.  Equilibrium adsorption of thorium by metal oxides in marine electrolytes , 1988 .

[66]  D. Girvin,et al.  Neptunium adsorption on synthetic amorphous iron oxyhydroxide , 1991 .

[67]  J. Murray,et al.  Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium , 1987 .

[68]  James A. Davis,et al.  Speciation of Adsorbed Ions at the Oxide/Water Interface , 1979 .

[69]  P. Schindler,et al.  Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/water interface , 1987 .

[70]  R. Mckenzie The adsorption of molybdenum on oxide surfaces , 1983 .

[71]  N. Barrow,et al.  A comparison of models for describing the adsorption of anions A on a variable charge mineral surface , 1987 .

[72]  R. Sprycha Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface , 1984 .

[73]  J. Quirk,et al.  An objective method for fitting models of ion adsorption on variable charge surfaces , 1980 .

[74]  James W. Murray,et al.  The adsorption of plutonium IV and V on goethite , 1985 .

[75]  K. Hunter,et al.  Competitive adsorption of phosphate on goethite in marine electrolytes , 1989 .

[76]  S. Goldberg,et al.  Boron Adsorption on Aluminum and Iron Oxide Minerals1 , 1985 .

[77]  D. Langmuir,et al.  Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model , 1985 .

[78]  L. Charlet,et al.  From adsorption to precipitation: Sorption of Mn2+ on FeCO3(s) , 1989 .

[79]  J. Middelburg,et al.  Sorption of trace metals on calcite: Applicability of the surface precipitation model , 1987 .

[80]  D. Sparks,et al.  Kinetics and mechanisms of molybdate adsorption/desorption at the goethite/water interface using pressure-jump relaxation , 1989 .

[81]  R. Sprycha Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential , 1989 .

[82]  A. Juo,et al.  Surface and Charge Characteristics of Selected Soils in the Tropics1 , 1976 .

[83]  N. Barrow Testing a mechanistic model. IX. Competition between anions for sorption by soil , 1989 .

[84]  Robert L. Street,et al.  A Groundwater Mass Transport and Equilibrium Chemistry Model for Multicomponent Systems , 1985 .

[85]  G. Sposito,et al.  A chemical model of phosphate adsorption by soils. I: Reference oxide minerals , 1984 .

[86]  J. Quirk,et al.  Zinc adsorption by goethite in the absence and presence of phosphate , 1977 .

[87]  G. Bolt,et al.  Electrolyte adsorption on heterogeneous surfaces: adsorption models , 1986 .

[88]  P. Schindler,et al.  Acid — base reactions of the TiO2 (Anatase) — water interface and the point of zero charge of TiO2 suspensions , 1972 .

[89]  J. Leckie,et al.  Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces , 1987 .

[90]  S. Zee,et al.  Adsorption and desorption reactions 2: comparison of models for adsorption, solid solution and surface precipitation. , 1991 .

[91]  R. Baker Contaminants and sediments , 1980 .

[92]  N. Barrow A mechanistic model for describing the sorption and desorption of phosphate by soil , 1983 .

[93]  J. Lyklema,et al.  Interfacial electrochemistry of haematite (α-Fe2O3) , 1971 .

[94]  S. Goldberg SENSITIVITY OF SURFACE COMPLEXATION MODELING TO THE SURFACE SITE DENSITY PARAMETER , 1991 .

[95]  L. Balistrieri,et al.  Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide , 1990 .

[96]  Paul W. Schindler,et al.  Ligand properties of surface silanol groups. I. surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+ , 1976 .

[97]  J. Leckie,et al.  Surface ionization and complexation at the oxide/water interface , 1978 .

[98]  P. Schindler,et al.  Kinetics and mechanism of dissolution of bayerite (γ-Al(OH)3) in HNO3-HF solutions at 298.2°K , 1984 .

[99]  G. Sposito On the surface complexation model of the oxide-aqueous solution interface , 1983 .

[100]  S. Goldberg,et al.  Boron Adsorption on California Soils , 1986 .

[101]  N. Barrow Testing a mechanistic model. II. The effects of time and temperature on the reaction of zinc with a soil , 1986 .

[102]  S. Goldberg,et al.  Boron Adsorption and Silicon Release by the Clay Minerals Kaolinite, Montmorillonite, and Illite1 , 1986 .

[103]  N. Bolan,et al.  Describing the effect of time on sorption of phosphate by iron and aluminium hydroxides , 1985 .

[104]  James A. Davis,et al.  Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions , 1978 .

[105]  F. Morel,et al.  A surface precipitation model for the sorption of cations on metal oxides , 1985 .

[106]  F. Cabrera,et al.  Use of a three‐plane model to describe charge properties of some iron oxides and soil clays , 1983 .

[107]  S. Goldberg,et al.  Boron and Silicon Adsorption on an Aluminum Oxide , 1988 .

[108]  G. Sposito,et al.  Selenite Adsorption on Alluvial Soils: III. Chemical Modeling , 1988 .

[109]  J. Wit,et al.  Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach: II. Application to various important (hydr)oxides , 1989 .

[110]  P. Schindler,et al.  Die Acidität von Silanolgruppen. Vorläufige Mitteillung , 1968 .

[111]  A. Ellis,et al.  Testing a mechanistic model. III. The effects of pH on fluoride retention by a soil , 1986 .

[112]  J. Ivey,et al.  Ann Arbor, Michigan , 1969 .

[113]  A. Ellis,et al.  Testing a mechanistic model. V. The points of zero salt effect for phosphate retention, for zinc retention and for acid/alkali titration of a soil , 1986 .

[114]  James A. Davis,et al.  Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions , 1980 .

[115]  D. Sparks,et al.  Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface , 1990 .

[116]  R. L. Schmidt,et al.  Chromate Adsorption by Kaolinite , 1988 .

[117]  N. Barrow Testing a mechanistic model. IV. Describing the effects of pH on zinc retention by soils , 1986 .

[118]  N. Bolan,et al.  Ionic strength effects on surface charge and adsorption of phosphate and sulphate by soils , 1986 .

[119]  Ryszard Sprycha,et al.  Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential , 1989 .

[120]  R. Sprycha Attempt to estimate σβ charge components on oxides from anion and cation adsorption measurements , 1983 .

[121]  J. Quirk,et al.  Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface , 1980 .

[122]  Y. Bérubé,et al.  ADSORPTION AT THE RUTILE-SOLUTION INTERFACE: I. THERMODYNAMIC AND EXPERIMENTAL STUDY. , 1968 .

[123]  J. Leckie,et al.  MULTIPLE-SITE ADSORPTION OF CD, CU, ZN, AND PB ON AMORPHOUS IRON OXYHYDROXIDE , 1981 .

[124]  L. Koopal,et al.  Surface ionization and complexation models: A comparison of methods for determining model parameters. , 1987 .

[125]  P. Schindler,et al.  Acid/base reactions and Al(III) complexation at the surface of goethite , 1990 .

[126]  J. Zachara,et al.  Chromate adsorption on goethite: effects of aluminum substitution , 1989 .

[127]  J. Quirk,et al.  Corrigenda - Ionic adsorption on variable charge mineral surfaces. Theoretical charge development and titration curves , 1977 .

[128]  G. Bolt,et al.  Ion adsorption on inorganic variable charge constituents , 1982 .

[129]  John C. Westall Reactions at the Oxide-Solution Interface: Chemical and Electrostatic Models , 1987 .

[130]  James O. Leckie,et al.  Mechanism of Lead Ion Adsorption at the Goethite—Water Interface , 1987 .

[131]  D. Sparks,et al.  Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. , 1990 .

[132]  J. Szczypa,et al.  Estimation of surface ionization constants from electrokinetic data , 1984 .

[133]  G. Brümmer,et al.  Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. II Modelling the extent and rate of reaction , 1989 .

[134]  J. Lyklema,et al.  The reaction of phosphate with aluminum hydroxide in relation with phosphate bonding in soils , 1980 .

[135]  G. Sposito,et al.  Monovalent ion adsorption by an oxisol , 1987 .

[136]  N. Barrow Modelling the effects of pH on phosphate sorption by soils , 1984 .

[137]  G. Sposito,et al.  A Chemical Model of Phosphate Adsorption by Soils: II. Noncalcareous Soils1 , 1984 .

[138]  D. Langmuir,et al.  Adsorption of Cu, Pb and Zn by δMnO2: applicability of the site binding-surface complexation model , 1986 .

[139]  A. Regazzoni,et al.  Interfacial properties of zirconium dioxide and magnetite in water , 1983 .

[140]  N. Barrow Testing a mechanistic model. I. The effects of time and temperature on the reaction of fluoride and molybdate with a soil , 1986 .