Derivatives and jacobians
暂无分享,去创建一个
[1] É. Picard. Traité d'Analyse , 2013 .
[2] G. B. Price. Some Identities in the Theory of Determinants , 1947 .
[3] P. Franklin. Osculating curves and surfaces , 1926 .
[4] H. Rademacher. Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .
[5] T. Muir. The Theory of Determinants in the Historical Order of Development , 1912 .
[6] M. Bôcher. Kowalewski's Determinants , 1910 .
[7] T. Muir. VI.—The Theory of Jacobians, from 1885 to 1919. , 1929 .
[8] S. Banach. Sur les lignes rectifiables et les surfaces dont l'aire est finie , 1925 .
[9] J. C. Burkill. The Expression of Area as an Integral , 1924 .
[10] S. Banach. Sur une classe de fonctions d'ensemble , 1924 .
[11] Gerhard Kowalewski,et al. Einführung in die Determinantentheorie : einschließlich der unendlichen und der Fredholmschen Determinanten , 1909 .
[12] W. Donkin. V. On a class of differential equations, including those which occur in dynamical problems.- Part I , 1854, Philosophical Transactions of the Royal Society of London.
[13] J. Sylvester,et al. XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure , 1853, Philosophical Transactions of the Royal Society of London.
[14] C. Jacobi. De Determinantibus functionalibus. , 1841 .
[15] C. Jacobi,et al. De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas tranformandis, quae solis quadratis variabilium constant; una cum variis theorematis de tranformatione etdeterminatione integralium multiplicium. , 1834 .