Locking the frequency of lasers to an optical cavity at the 1.6×10−17 relative instability level

We stabilized the frequencies of two independent Nd:YAG lasers to two adjacent longitudinal modes of a high-finesse Fabry–Pérot resonator and obtained a beat frequency instability of 6.3 mHz at an integration time of 40 s. Referred to a single laser, this is 1.6×10−17 relative to the laser frequency, and 1.3×10−6 relative to the full width at half maximum of the cavity resonance. The amplitude spectrum of the beat signal had a FWHM of 7.8 mHz. This stable frequency locking is of importance for next-generation optical clock interrogation lasers and fundamental physics tests.

[1]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[2]  R. Byer,et al.  Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer , 1992 .

[3]  H. Müller,et al.  Offset compensation by use of amplitude-modulated sidebands in optical frequency standards. , 2003, Optics letters.

[4]  Thomas Legero,et al.  Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors , 2010, 1002.2070.

[5]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[6]  A. Nevsky,et al.  A crossed optical cavities apparatus for a precision test of the isotropy of light propagation , 2008 .

[7]  Hidetoshi Katori,et al.  Colloquium: Physics of optical lattice clocks , 2010, 1011.4622.

[8]  H. Margolis,et al.  Frequency metrology and clocks , 2009 .

[9]  H. Walther,et al.  Single Indium Ion optical frequency Standard , 2005, 2004 Conference on Precision Electromagnetic Measurements.

[10]  A. Kostelecký,et al.  Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.

[11]  Stephan Schiller,et al.  CRYOGENIC OPTICAL RESONATORS : A NEW TOOL FOR LASER FREQUENCY STABILIZATION AT THE 1 HZ LEVEL , 1997 .

[12]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[13]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[14]  A. Nevsky,et al.  A laboratory test of the isotropy of light propagation at the 10−17 level , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[15]  J. Mlynek,et al.  Nd:YAG laser frequency stabilization to a supercavity at the 0.1 Hz level , 1997 .

[16]  Achim Peters,et al.  Modern Michelson-Morley experiment using cryogenic optical resonators. , 2003, Physical review letters.

[17]  John L. Hall,et al.  Laser stabilization at the millihertz level , 1988 .

[18]  M. Takamoto,et al.  An optical lattice clock , 2005, Nature.