"Blind" visual inference by composition

Abstract “Blind” visual inference can often be performed by exploiting the internal redundancy inside a single visual datum (whether an image or a video). The strong recurrence of patches inside a single image/video provides a powerful data-specific priorfor solving complex visual tasks in a “blind” manner. The term “blind” is used here with a double meaning: (i) Blind in the sense that we can make sophisticated inferences about things we have never seen before, in a totally unsupervised way, with no prior examples or training; and (ii) Blind in the sense that we can solve complex Inverse-Problems, even when the forward degradation model is unknown. This paper briefly reviews this approach and its applicability to a variety of vision problems, ranging from low-level to high-level, including: (1) “Blind Optics” – recover optical properties of the unknown sensor, or optical properties of the unknown environment. This in turn gives rise to Blind-Deblurrimg, Blind-Dehazing, and more. (2) Segmentation of unconstrained videos and images. (3) Detection of complex objects and actions (with no prior examples or training).

[1]  Michal Irani,et al.  Detecting Irregularities in Images and in Video , 2005, ICCV.

[2]  Michal Irani,et al.  Blind dehazing using internal patch recurrence , 2016, 2016 IEEE International Conference on Computational Photography (ICCP).

[3]  Michael Werman,et al.  Fundamental Matrices from Moving Objects Using Line Motion Barcodes , 2016, ECCV.

[4]  Eli Shechtman,et al.  In defense of Nearest-Neighbor based image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Rainer Lienhart,et al.  Comparing Local Feature Descriptors in pLSA-Based Image Models , 2008, DAGM-Symposium.

[6]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[7]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[9]  Robby T. Tan,et al.  Visibility in bad weather from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Derek Hoiem,et al.  Category Independent Object Proposals , 2010, ECCV.

[11]  Raanan Fattal,et al.  Image and video upscaling from local self-examples , 2011, TOGS.

[12]  Adam Finkelstein,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, SIGGRAPH 2009.

[13]  Michal Irani,et al.  Space-time super-resolution from a single video , 2011, CVPR 2011.

[14]  Michal Irani,et al.  "Clustering by Composition" - Unsupervised Discovery of Image Categories , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yong Jae Lee,et al.  Foreground Focus: Unsupervised Learning from Partially Matching Images , 2009, International Journal of Computer Vision.

[17]  Yong Jae Lee,et al.  Shape discovery from unlabeled image collections , 2009, CVPR.

[18]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[19]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[20]  Trevor Darrell,et al.  Unsupervised Learning of Categories from Sets of Partially Matching Image Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Shree K. Nayar,et al.  Vision in bad weather , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[23]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[24]  Michal Irani,et al.  Temporal-Needle: A view and appearance invariant video descriptor , 2016, ArXiv.

[25]  Michal Irani,et al.  Video Segmentation by Non-Local Consensus voting , 2014, BMVC.

[26]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[27]  Luc Van Gool,et al.  A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[29]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Shree K. Nayar,et al.  Instant dehazing of images using polarization , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  Raanan Fattal,et al.  Dehazing Using Color-Lines , 2014, ACM Trans. Graph..

[33]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[34]  Patrick Pérez,et al.  View-Independent Action Recognition from Temporal Self-Similarities , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Michal Irani,et al.  Blind Deblurring Using Internal Patch Recurrence , 2014, ECCV.

[37]  Xiaoou Tang,et al.  Single Image Haze Removal Using Dark Channel Prior , 2011 .

[38]  Michal Irani,et al.  What Is a Good Image Segment? A Unified Approach to Segment Extraction , 2008, ECCV.

[39]  Michal Irani,et al.  “Clustering by Composition”—Unsupervised Discovery of Image Categories , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Sinisa Todorovic,et al.  From a Set of Shapes to Object Discovery , 2010, ECCV.

[41]  Jian Sun,et al.  Single image haze removal using dark channel prior , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Denis Simakov,et al.  Summarizing visual data using bidirectional similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Ketan Tang,et al.  Investigating Haze-Relevant Features in a Learning Framework for Image Dehazing , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Eran Yahav,et al.  Statistical similarity of binaries , 2016, PLDI.

[45]  Shree K. Nayar,et al.  Chromatic framework for vision in bad weather , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[46]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Jitendra Malik,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Michal Irani,et al.  Internal statistics of a single natural image , 2011, CVPR 2011.

[49]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[50]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[51]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[52]  Christos Faloutsos,et al.  Unsupervised modeling of object categories using link analysis techniques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[54]  Yael Pritch,et al.  Shift-map image editing , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[55]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, SIGGRAPH 2008.

[56]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[57]  Michal Irani,et al.  Separating Signal from Noise Using Patch Recurrence across Scales , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[59]  Christoph H. Lampert,et al.  Unsupervised Object Discovery: A Comparison , 2010, International Journal of Computer Vision.

[60]  Raanan Fattal Single image dehazing , 2008, SIGGRAPH 2008.

[61]  Eli Shechtman,et al.  Space-Time Completion of Video , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Shree K. Nayar,et al.  Contrast Restoration of Weather Degraded Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[64]  Michael Werman,et al.  Camera Calibration from Dynamic Silhouettes Using Motion Barcodes , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Michael Werman,et al.  Automatic recovery of the atmospheric light in hazy images , 2014, 2014 IEEE International Conference on Computational Photography (ICCP).

[66]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[67]  Michal Irani,et al.  Similarity by Composition , 2006, NIPS.

[68]  Yoav Y. Schechner,et al.  Blind Haze Separation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[69]  Michal Irani,et al.  Nonparametric Blind Super-resolution , 2013, 2013 IEEE International Conference on Computer Vision.

[70]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[71]  Michal Irani,et al.  Co-segmentation by Composition , 2013, 2013 IEEE International Conference on Computer Vision.

[72]  Ling Shao,et al.  A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior , 2015, IEEE Transactions on Image Processing.