Convergence of a Finite Difference Scheme for Two-Dimensional Incompressible Magnetohydrodynamics
暂无分享,去创建一个
[1] W. Habashi,et al. A finite element method for magnetohydrodynamics , 2001 .
[2] Jian-Guo Liu,et al. Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry , 2004 .
[3] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[4] Roger Temam,et al. Some mathematical questions related to the MHD equations , 1983 .
[5] Jian-Guo Liu,et al. Convergence Analysis of the Energy and Helicity Preserving Scheme for Axisymmetric Flows , 2006, SIAM J. Numer. Anal..
[6] Chi-Wang Shu,et al. Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..
[7] Robert L. Pego,et al. Stable discretization of magnetohydrodynamics in bounded domains , 2010 .
[8] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[9] Jinchao Xu,et al. Stable finite element methods preserving ∇·B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \cdot \varvec{B}= , 2014, Numerische Mathematik.
[10] G. Kanschat. Divergence‐free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme , 2008 .
[11] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[12] G. Gustafson,et al. Boundary Value Problems of Mathematical Physics , 1998 .
[13] Dominik Schötzau,et al. Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.
[14] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[15] J. L. Lions,et al. Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .
[16] M. Gunzburger,et al. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .
[18] Ming Wang,et al. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations , 2015, J. Sci. Comput..
[19] X. Wu,et al. Analysis and convergence of the MAC scheme. II. Navier-Stokes equations , 1996, Math. Comput..
[20] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[21] D. Schötzau,et al. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .
[22] Zhouping Xin,et al. On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .
[23] Magnus Svärd,et al. Higher-order finite difference schemes for the magnetic induction equations with resistivity , 2011 .
[24] Spencer Frei,et al. Weak convergence methods for nonlinear partial differential equations , 2012 .
[25] L. Driel-Gesztelyi. An Introduction to Magnetohydrodynamics , 2004 .
[26] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[27] Vivette Girault,et al. Finite-element error estimates for the MAC scheme , 1996 .
[28] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[29] Houde Han,et al. A New Mixed Finite Element Formulation and the MAC Method for the Stokes Equations , 1998 .
[30] J. A. Shercliff,et al. A Textbook of Magnetohydrodynamics , 1965 .
[31] Jian-Guo Liu,et al. An energy-preserving MAC-Yee scheme for the incompressible MHD equation , 2001 .
[32] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .