Classes of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance

This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance might not equal the others, which are all equal. Also for many subclasses of perfect graphs other than the strongly perfect class, independence, upper domination and upper irredundance are not necessarily equal. We also show that if the graph join operation is used to combine two graphs which have some of the parameters equal, the resulting graph will have the same parameters equal.

[1]  Stephan Olariu,et al.  The Strong Perfect Graph Conjecture for pan-free graphs , 1989, J. Comb. Theory B.

[2]  Zoltán Füredi,et al.  On the Fractional Covering Number of Hypergraphs , 1988, SIAM J. Discret. Math..

[3]  Chính T. Hoàng,et al.  On slim graphs, even pairs, and star-cutsets , 1992, Discret. Math..

[4]  Henry Meyniel The Graphs Whose Odd Cycles have at Least two Chords , 1984 .

[5]  Liping Sun Two classes of perfect graphs , 1991, J. Comb. Theory, Ser. B.

[6]  Michael R. Fellows,et al.  The Private Neighbor Cube , 1994, SIAM J. Discret. Math..

[7]  K. R. Parthasarathy,et al.  The validity of the strong perfect-graph conjecture for (K4-e)-free graphs , 1979, J. Comb. Theory, Ser. B.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Chính T. Hoàng Alternating orientation and alternating colouration of perfect graphs , 1987, J. Comb. Theory, Ser. B.

[10]  O. Favaron Stability, domination and irredundance in a graph , 1986 .

[11]  Michael S. Jacobson,et al.  Chordal graphs and upper irredundance, upper domination and independence , 1991, Discret. Math..

[12]  Odile Favaron,et al.  Contributions to the theory of domination, independence and irredundance in graphs , 1981, Discret. Math..

[13]  Claude Berge Packing Problems and Hypergraph Theory: A Survey , 1979 .

[14]  Ron Aharoni Fractional matchings and covers in infinite hypergraphs , 1985, Comb..

[15]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[16]  V. Chvátal,et al.  Topics on perfect graphs , 1984 .

[17]  Alan Tucker Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.

[18]  Gottfried Tinhofer,et al.  Strong tree-cographs are birkhoff graphs , 1989, Discret. Appl. Math..

[19]  John A. Hertz Slender graphs , 1989, J. Comb. Theory, Ser. B.

[20]  William R. Pulleyblank Fractional matchings and the Edmonds-Gallai theorem , 1987, Discret. Appl. Math..

[21]  V. Chvátal Perfectly Ordered Graphs , 1984 .

[22]  V. Klee What Are the Intersection Graphs of Arcs in a Circle , 1969 .

[23]  E. Cockayne,et al.  Properties of Hereditary Hypergraphs and Middle Graphs , 1978, Canadian Mathematical Bulletin.

[24]  Zoltán Füredi,et al.  Maximum degree and fractional matchings in uniform hypergraphs , 1981, Comb..

[25]  Ryan B. Hayward,et al.  Murky graphs , 1990, J. Comb. Theory, Ser. B.

[26]  P. Duchet,et al.  Strongly Perfect Graphs , 1984 .

[27]  Michael S. Jacobson,et al.  A Note on Graphs Which Have Upper Irredundance Equal to Independence , 1993, Discret. Appl. Math..

[28]  Stephen T. Hedetniemi,et al.  On the computational complexity of upper fractional domination , 1990, Discret. Appl. Math..

[29]  Martin Charles Golumbic,et al.  Irredundancy in Circular Arc Graphs , 1993, Discret. Appl. Math..