Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution.

[1]  R. Jenkins,et al.  Wood‐fall associations from Late Cretaceous deep‐water sediments of Hokkaido, Japan , 2009 .

[2]  S. Duperron,et al.  Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. , 2008, FEMS microbiology ecology.

[3]  E. Southward The Morphology of Bacterial Symbioses in the Gills of Mussels of the Genera Adipicola and Idas (Bivalvia: Mytilidae) , 2008 .

[4]  R. Vrijenhoek,et al.  Absence of Cospeciation Between Deep-Sea Mytilids and Their Thiotrophic Endosymbionts , 2008 .

[5]  S. Duperron,et al.  Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). , 2008, Environmental microbiology.

[6]  S. Duperron,et al.  3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus , 2008, The ISME Journal.

[7]  D. Jollivet,et al.  Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt , 2007 .

[8]  A. Boetius,et al.  Feast and famine — microbial life in the deep-sea bed , 2007, Nature Reviews Microbiology.

[9]  O. Gros,et al.  Gill-symbiosis in mytilidae associated with wood fall environments , 2007, Zoomorphology.

[10]  N. Dubilier,et al.  Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. , 2007, Environmental microbiology.

[11]  Sarah Samadi,et al.  Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. , 2007, Comptes rendus biologies.

[12]  J A Eisen,et al.  The Calyptogena magnifica Chemoautotrophic Symbiont Genome , 2007, Science.

[13]  J. L. Goedert,et al.  A WOOD-FALL ASSOCIATION FROM LATE EOCENE DEEP-WATER SEDIMENTS OF WASHINGTON STATE, USA , 2006 .

[14]  T. Shank,et al.  Off-axis symbiosis found: Characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. , 2006, Environmental microbiology.

[15]  T. Tourova,et al.  Phylogenetic characterization of endosymbionts of the hydrothermal vent mussel Bathymodiolus azoricus by analysis of the 16S rRNA, cbbL, and pmoA genes , 2006, Microbiology.

[16]  N. Dubilier,et al.  A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. , 2006, Environmental microbiology.

[17]  T. Naganuma,et al.  Molecular Characterization of a Deep-Sea Methanotrophic Mussel Symbiont that Carries a RuBisCO Gene , 2006, Marine Biotechnology.

[18]  Leonardo de Oliveira Martins,et al.  Evolutionary relationships of deep-sea mussels inferred by mitochondrial DNA sequences , 2006 .

[19]  R. Vrijenhoek,et al.  Evolution of habitat use by deep-sea mussels , 2006 .

[20]  C. Fisher,et al.  A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents , 2005 .

[21]  C. Cavanaugh,et al.  The ubiquitous mussel: Bathymodiolus aff. brevior symbiosis at the Central Indian Ridge hydrothermal vents , 2005 .

[22]  P. Dando,et al.  Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus , 2005 .

[23]  S. Hallam,et al.  Characterization of Symbiont Populations in Life-History Stages of Mussels From Chemosynthetic Environments , 2005, The Biological Bulletin.

[24]  R. Amann,et al.  Dual Symbiosis in a Bathymodiolus sp. Mussel from a Methane Seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA Phylogeny and Distribution of the Symbionts in Gills , 2005, Applied and Environmental Microbiology.

[25]  Rudolf Amann,et al.  Simultaneous Fluorescence In Situ Hybridization of mRNA and rRNA in Environmental Bacteria , 2004, Applied and Environmental Microbiology.

[26]  C. Fisher,et al.  Tissue carbon, nitrogen, and sulfur stable isotope turnover in transplanted Bathymodiolus childressi mussels: Relation to growth and physiological condition , 2004 .

[27]  Y. Fujiwara,et al.  Phylogenetic relationships of deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) , 2004 .

[28]  S. Macko,et al.  Tissue and symbiont condition of mussels (Bathymodiolus thermophilus) exposed to varying levels of hydrothermal activity , 2004, Journal of the Marine Biological Association of the United Kingdom.

[29]  S. Hallam,et al.  Environmental Acquisition of Thiotrophic Endosymbionts by Deep-Sea Mussels of the Genus Bathymodiolus , 2003, Applied and Environmental Microbiology.

[30]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[31]  R. Vrijenhoek,et al.  Cytonuclear disequilibrium in a hybrid zone involving deep‐sea hydrothermal vent mussels of the genus Bathymodiolus , 2003, Molecular ecology.

[32]  A. Baco,et al.  High species richness in deep-sea chemoautotrophic whale skeleton communities , 2003 .

[33]  A. Mariotti,et al.  Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolusazoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis , 2002 .

[34]  M. Kalyuzhnaya,et al.  Utilization of Methane and Carbon Dioxide by Symbiotrophic Bacteria in Gills of Mytilidae (Bathymodiolus) from the Rainbow and Logachev Hydrothermal Fields on the Mid-Atlantic Ridge , 2002, Microbiology.

[35]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[36]  C. Kato,et al.  Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific , 2001 .

[37]  Y. Fujiwara,et al.  Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions , 2000 .

[38]  Dominique Birot,et al.  A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities , 2000 .

[39]  Cindy Lee Van Dover,et al.  The Ecology of Deep-Sea Hydrothermal Vents , 2000 .

[40]  A. Baco,et al.  Marine ecology: Do mussels take wooden steps to deep-sea vents? , 2000, Nature.

[41]  C. V. Van Dover,et al.  Site‐specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid‐ Atlantic Ridge , 1999 .

[42]  M. Polz,et al.  Physiological and immunological evidence for two distinct C1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge , 1998 .

[43]  R. Vrijenhoek,et al.  Cospeciation of chemoautotrophic bacteria and deep sea clams. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  N. Dubilier,et al.  Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussels Bathymodiolus brevior and B. sp. affinis brevior from the North Fiji Basin, western Pacific , 1998 .

[45]  J. Sargent,et al.  Stable-Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts , 1998, Applied and Environmental Microbiology.

[46]  Megan E. Streams,et al.  Methanotrophic symbiont location and fate of carbon incorporated from methane in a hydrocarbon seep mussel , 1997 .

[47]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[48]  C. Cavanaugh,et al.  Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Summons,et al.  Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis , 1995, Applied and environmental microbiology.

[50]  J. Childress,et al.  Assimilation of Inorganic Nitrogen by Marine Invertebrates and Their Chemoautotrophic and Methanotrophic Symbionts , 1994, Applied and environmental microbiology.

[51]  C. Cavanaugh,et al.  Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves , 1994, Journal of bacteriology.

[52]  J. Childress,et al.  The Co‐occurrence of Methanotrophic and Chemoautotrophic Sulfur‐Oxidizing Bacterial Symbionts in a Deep‐sea Mussel , 1993 .

[53]  Roy Haines-Young,et al.  Biogeography , 1992, Vegetatio.

[54]  H. M. Page,et al.  Experimental evidence for filter-feeding by the hydrothermal vent mussel, Bathymodiolus thermophilus , 1991 .

[55]  J. Childress,et al.  Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at the Rose Garden vent on the Galapagos Rift , 1988 .

[56]  G J Olsen,et al.  Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences , 1988, Journal of bacteriology.

[57]  C. Fisher,et al.  Mussel Growth Supported by Methane as Sole Carbon and Energy Source , 1988, Science.

[58]  J. Childress,et al.  The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels , 1987 .

[59]  M. Lidstrom,et al.  Symbiosis of methylotrophic bacteria and deep-sea mussels , 1987, Nature.

[60]  J. Childress,et al.  A Methanotrophic Marine Molluscan (Bivalvia, Mytilidae) Symbiosis: Mussels Fueled by Gas , 1986, Science.

[61]  G. Somero,et al.  ADAPTATIONS TO SULFIDE BY HYDROTHERMAL VENT ANIMALS: SITES AND MECHANISMS OF DETOXIFICATION AND METABOLISM , 1986 .

[62]  M. Pennec,et al.  Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp. , 1986 .

[63]  J. Childress,et al.  In Situ Measurements of Chemical Distributions in a Deep-Sea Hydrothermal Vent Field , 1986, Science.

[64]  D. Nelson,et al.  SYMBIOTIC ASSIMILATION OF CO2 IN TWO HYDROTHERMAL VENT ANIMALS, THE MUSSEL BATHYMODIOLUS THERMOPHILUS AND THE TUBE WORM RIFTIA PACHYPTILA' , 1986 .

[65]  M. Klug,et al.  Current Perspectives in Microbial Ecology , 1985 .

[66]  C. Anthony,et al.  The Biochemistry of Methylotrophs , 1982 .

[67]  G. Rau,et al.  Carbon-13 Depletion in a Hydrothermal Vent Mussel: Suggestion of a Chemosynthetic Food Source , 1979, Science.

[68]  S. Duperron,et al.  Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. , 2007, FEMS microbiology ecology.

[69]  O. Gros,et al.  Extracellular bacterial association in gills of «wood mussels» , 2007 .

[70]  Colleen M. Cavanaugh,et al.  Marine Chemosynthetic Symbioses , 2006 .

[71]  M. Chial,et al.  in simple , 2003 .

[72]  R. Cosel A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with comments on the genus Bathymodiolus Kenk & Wilson, 1985 , 2002 .

[73]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[74]  P. Sarradin,et al.  Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid Atlantic Ridge , 1999 .

[75]  R. D. Turner,et al.  A new genus and five new species of mussels lBivalviac Mytilidaer from deep-sea sulfideshydrocarbon seeps in the Gulf of Mexico , 1998 .

[76]  K. Olu,et al.  Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins , 1998 .

[77]  D. Nelson,et al.  The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilus is a psychrophilic, chemoautotrophic, sulfur bacterium , 1995 .

[78]  W. Hoeh,et al.  Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps , 1995 .

[79]  J. Michalski,et al.  Lysosomic and lysozyme activities in the gill of bivalves from deep hydrothermal vents , 1994 .

[80]  A. Fiala-Médioni Mise en évidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes , 1984 .